Abstract
N-Acetyl-L-tyrosine semicarbazide is hydrolyzed by chymotrypsin (EC 3.4.21.1) to N-acetyl-L-tyrosine and semicarbazide. If a high concentration of semicarbazide is present, the equilibrium for the reaction can be shifted from hydrolysis to synthesis. Using N-acetyl-L-[13C]tyrosine enriched at the carboxyl carbon and high concentrations of semicarbazide hydrochloride, we have studied the enzyme-substrate complex of N-acetyl-L-[13C]tyrosine semicarbazide and chymotrypsin Aδ by 13C nuclear magnetic resonance. We observe no shift within the experimental accuracy of ±0.05 ppm as the fraction of substrate bound is changed from 0.17 to 0.70. Since E + S ⇄ ES is in fast exchange on the nuclear magnetic resonance time scale, it is possible to show that when the substrate is bound to the enzyme in the Michaelis complex, the 13C resonance is shifted less than 0.1 ppm, indicating that negligible substrate strain occurs in this complex at the site of enzymatic attack. These experiments demonstrate the application of nuclear magnetic resonance to the study of particular states along the reaction pathway for enzyme-substrate reactions at equilibrium.
Keywords: kinetic study
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. W., Zimmerman J. E., Callahan F. M. A reinvestigation of the mixed carbonic anhydride method of peptide synthesis. J Am Chem Soc. 1967 Sep 13;89(19):5012–5017. doi: 10.1021/ja00995a032. [DOI] [PubMed] [Google Scholar]
- Brandt K. G., Himoe A., Hess G. P. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. 3. Determination of individual rate constants and enzyme-substrate binding constants for specific amide and ester substrates. J Biol Chem. 1967 Sep 10;242(17):3973–3982. [PubMed] [Google Scholar]
- Browne D. T., Kenyon G. L., Packer E. L., Sternlicht H., Wilson D. M. Studies of macromolecular structure by 13 C nuclear magnetic resonance. II. A specific labeling approach to the study of histidine residues in proteins. J Am Chem Soc. 1973 Feb 21;95(4):1316–1323. doi: 10.1021/ja00785a050. [DOI] [PubMed] [Google Scholar]
- CAPLOW M., JENCKS W. P. THE CHYMOTRYPSIN-CATALYZED HYDROLYSIS AND SYNTHESIS OF N-ACETYL-L-TYROSINE HYDROXAMIC ACID. J Biol Chem. 1964 May;239:1640–1652. [PubMed] [Google Scholar]
- Fastrez J., Fersht A. R. Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry. 1973 May 22;12(11):2025–2034. doi: 10.1021/bi00735a001. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Requena Y. Free energies of hydrolysis of amides and peptides in aqueous solution at 25 degrees. J Am Chem Soc. 1971 Jul 14;93(14):3499–3504. doi: 10.1021/ja00743a034. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Requena Y. Mechanism of the -chymotrypsin-catalyzed hydrolysis of amides. pH dependence of k c and K m . Kinetic detection of an intermediate. J Am Chem Soc. 1971 Dec 15;93(25):7079–7087. doi: 10.1021/ja00754a066. [DOI] [PubMed] [Google Scholar]
- Gerig J. T., Rimerman R. A. Nuclear magnetic resonance studies of the interaction of N-formyltryptophanate with -chymotrypsin. J Am Chem Soc. 1972 Oct 18;94(21):7549–7558. doi: 10.1021/ja00776a044. [DOI] [PubMed] [Google Scholar]
- Hess G. P., McConn J., Ku E., McConkey G. Studies of the activity of chymotrypsin. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):89–104. doi: 10.1098/rstb.1970.0011. [DOI] [PubMed] [Google Scholar]
- JENCKS W. P., CAPLOW M., GILCHRIST M., KALLEN R. G. EQUILIBRIUM CONSTANTS FOR THE SYNTHESIS OF HYDROXAMIC ACIDS. Biochemistry. 1963 Nov-Dec;2:1313–1320. doi: 10.1021/bi00906a024. [DOI] [PubMed] [Google Scholar]
- Johnson C. H., Knowles J. R. The binding of inhibitors to alpha-chymotrypsin. Biochem J. 1966 Oct;101(1):56–62. doi: 10.1042/bj1010056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertus J. D., Kraut J., Alden R. A., Birktoft J. J. Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry. 1972 Nov 7;11(23):4293–4303. doi: 10.1021/bi00773a016. [DOI] [PubMed] [Google Scholar]
- Segal D. M., Powers J. C., Cohen G. H., Davies D. R., Wilcox P. E. Substrate binding site in bovine chymotrypsin A-gamma. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. Biochemistry. 1971 Sep 28;10(20):3728–3738. doi: 10.1021/bi00796a014. [DOI] [PubMed] [Google Scholar]
- Spotswood T., Evans J. M., Richards J. H. Enzyme--substrate interaction by nuclear magnetic resonance. J Am Chem Soc. 1967 Sep 13;89(19):5052–5054. doi: 10.1021/ja00995a047. [DOI] [PubMed] [Google Scholar]
