Abstract
For study of the basis of an X-linked form of gout in man, several clonal lines deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) were selected from the human lymphoblast line WI-L2 by spontaneous and mutagen-induced resistance to 10 μM 8-azaguanine. Three groups could be defined: (1) clones with less than 1% of normal enzyme activity, unable to incorporate [3H]hypoxanthine detectable by radioautography, unable to tuilize exogenous hypoxanthine as a source of purines, and showing a 2- to 4-fold accelerated rate of production of early intermediates in de novo purine biosynthesis; (2) clones with 56-63% of normal enzyme activity, decreased incorporation per cell of [3H]hypoxanthine measured by radioautography, able to utilize exogenous hypoxanthine, and showing 1.2- to 2.8-fold purine overproduction; (3) clones with 10-15% of normal enzyme activity, able to utilize hypoxanthine but not incorporating amounts detectable by radioautography, and showing a 2.3- to 2.5-fold increase in purine biosynthesis. Resistant clones generated by ICR 191 mutagenesis resembled Group 1 clones. Heat inactivation studies in crude extracts from certain clones in Group 2 suggest a structural gene mutation, but no qualitative alteration in enzyme could be detected by starch gel electrophoresis. These phenotypes have persisted over at least 300 generations of nonselective growth, with retention of a diploid karyotype.
Keywords: hypoxanthine-guanine phosphoribosyltransferase deficiency, gout, formylglycinamide ribonucleotide
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakay B., Nyhan W. L., Fawcett N., Kogut M. D. Isoenzymes of hypoxanthine-guanine-phosphoribosyl transferase in a family with partial deficiency of the enzyme. Biochem Genet. 1972 Aug;7(1):73–85. doi: 10.1007/BF00487011. [DOI] [PubMed] [Google Scholar]
- Beaudet A. L., Roufa D. J., Caskey C. T. Mutations affecting the structure of hypoxanthine: guanine phosphoribosyltransferase in cultured Chinese hamster cells. Proc Natl Acad Sci U S A. 1973 Feb;70(2):320–324. doi: 10.1073/pnas.70.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker M. A., Meyer L. J., Wood A. W., Seegmiller J. E. Purine overproduction in man associated with increased phosphoribosylpyrophosphate synthetase activity. Science. 1973 Mar 16;179(4078):1123–1126. doi: 10.1126/science.179.4078.1123. [DOI] [PubMed] [Google Scholar]
- Benke P. J., Herrick N. Azaguanine-resistance as a manifestation of a new form of metabolic overproduction of uric acid. Am J Med. 1972 Apr;52(4):547–555. doi: 10.1016/0002-9343(72)90046-0. [DOI] [PubMed] [Google Scholar]
- Choi K. W., Bloom A. D. Biochemically marked lymphocytoid lines: establishment of Lesch-Nyhan cells. Science. 1970 Oct 2;170(3953):89–90. doi: 10.1126/science.170.3953.89. [DOI] [PubMed] [Google Scholar]
- Creech H. J., Preston R. K., Peck R. M., O'Connell A. P. Antitumor and mutagenic properties of a variety of heterocyclic nitrogen and sulfur mustards. J Med Chem. 1972 Jul;15(7):739–746. doi: 10.1021/jm00277a011. [DOI] [PubMed] [Google Scholar]
- DeMars R., Held K. R. The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik. 1972;16(1):87–110. doi: 10.1007/BF00393992. [DOI] [PubMed] [Google Scholar]
- Fujimoto W. Y., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency: activity in normal, mutant, and heterozygote-cultured human skin fibroblasts. Proc Natl Acad Sci U S A. 1970 Mar;65(3):577–584. doi: 10.1073/pnas.65.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerber P. Activation of Epstein-Barr virus by 5-bromodeoxyuridine in "virus-free" human cells (complement-fixing antigen-immunofluorescence-leukocytes). Proc Natl Acad Sci U S A. 1972 Jan;69(1):83–85. doi: 10.1073/pnas.69.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao F. T., Puck T. T. Genetics of somatic mammalian cells. IX. Quantitation of mutagenesis by physical and chemical agents. J Cell Physiol. 1969 Dec;74(3):245–258. doi: 10.1002/jcp.1040740305. [DOI] [PubMed] [Google Scholar]
- Kelley W. N., Greene M. L., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969 Jan;70(1):155–206. doi: 10.7326/0003-4819-70-1-155. [DOI] [PubMed] [Google Scholar]
- Kelley W. N., Meade J. C. Studies on hypoxanthine-guanine phosphoribosyltransferase in fibroblasts from patients with the Lesch-Nyhan syndrome. Evidence for genetic heterogeneity. J Biol Chem. 1971 May 10;246(9):2953–2958. [PubMed] [Google Scholar]
- Kelley W. N., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. A specific enzyme defect in gout associated with overproduction of uric acid. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1735–1739. doi: 10.1073/pnas.57.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley W. N., Rosenbloom F. M., Seegmiller J. E., Howell R. R. Excessive production of uric acid in type I glycogen storage disease. J Pediatr. 1968 Apr;72(4):488–496. doi: 10.1016/s0022-3476(68)80339-7. [DOI] [PubMed] [Google Scholar]
- LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
- Langridge J. Thermal responses of mutant enzymes and temperature limits to growth. Mol Gen Genet. 1968;103(2):116–126. doi: 10.1007/BF00427139. [DOI] [PubMed] [Google Scholar]
- Lerner R. A., McConahey P. J., Dixon F. J. Quantitative aspects of plasma membrane-associated immunoglobulin in clones of diploid human lymphocytes. Science. 1971 Jul 2;173(3991):60–62. doi: 10.1126/science.173.3991.60. [DOI] [PubMed] [Google Scholar]
- Levy J. A., Buell D. N., Creech C., Hirshaut Y., Silverberg H. Further characterization of the WI-L1 and WI-L2 lymphoblastoid lines. J Natl Cancer Inst. 1971 Mar;46(3):647–654. [PubMed] [Google Scholar]
- Levy J. A., Virolainen M., Defendi V. Human lymphoblastoid lines from lymph node and spleen. Cancer. 1968 Sep;22(3):517–524. doi: 10.1002/1097-0142(196809)22:3<517::aid-cncr2820220305>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
- McDonald J. A., Kelley W. N. Lesch-Nyhan syndrome: altered kinetic properties of mutant enzyme. Science. 1971 Feb 19;171(3972):689–691. doi: 10.1126/science.171.3972.689. [DOI] [PubMed] [Google Scholar]
- Miller O. J., Miller D. A., Allderdice P. W., Dev V. G., Grewal M. S. Quinacrine fluorescent karyotypes of human diploid and heteroploid cell lines. Cytogenetics. 1971;10(5):338–346. doi: 10.1159/000130152. [DOI] [PubMed] [Google Scholar]
- Moore G. E., Gerner R. E., Franklin H. A. Culture of normal human leukocytes. JAMA. 1967 Feb 20;199(8):519–524. [PubMed] [Google Scholar]
- Rosenbloom F. M., Henderson J. F., Caldwell I. C., Kelley W. N., Seegmiller J. E. Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968 Mar 25;243(6):1166–1173. [PubMed] [Google Scholar]
- Rubin C. S., Dancis J., Yip L. C., Nowinski R. C., Balis M. E. Purification of IMP:pyrophosphate phosphoribosyltransferases, catalytically incompetent enzymes in Lesch-Nyhan disease. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1461–1464. doi: 10.1073/pnas.68.7.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Slesinski R. S., Littlefield J. W. Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts. Proc Natl Acad Sci U S A. 1972 May;69(5):1244–1248. doi: 10.1073/pnas.69.5.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seabright M. The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma. 1972;36(2):204–210. doi: 10.1007/BF00285214. [DOI] [PubMed] [Google Scholar]
- Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
- Sharp J. D., Capecchi N. E., Capecchi M. R. Altered enzymes in drug-resistant variants of mammalian tissue culture cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3145–3149. doi: 10.1073/pnas.70.11.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperling O., Boer P., Persky-Brosh S., Kanarek E., De Vries A. Altered kinetic property of erythrocyte phosphoribosylpsyrophosphate synthetase in excessive purine production. Rev Eur Etud Clin Biol. 1972 Aug-Sep;17(7):703–706. [PubMed] [Google Scholar]
- Watson B., Gormley I. P., Gardiner S. E., Evans H. J., Harris H. Reappearance of murine hypoxanthine guanine phosphoribosyl transferase activity in mouse A9 cells after attempted hybridisation with human cell lines. Exp Cell Res. 1972 Dec;75(2):401–409. doi: 10.1016/0014-4827(72)90446-6. [DOI] [PubMed] [Google Scholar]
- Wood A. W., Becker M. A., Seegmiller J. E. Purine nucleotide synthesis in lymphoblasts cultured from normal subjects and a patient with Lesch-Nyhan syndrome. Biochem Genet. 1973 Jul;9(3):261–274. doi: 10.1007/BF00485739. [DOI] [PubMed] [Google Scholar]
- Yamane I., Matsuya Y., Jimbo K. An autoclavable powdered culture medium for mammalian cells. Proc Soc Exp Biol Med. 1968 Jan;127(1):335–336. doi: 10.3181/00379727-127-32685. [DOI] [PubMed] [Google Scholar]
- Yü T. F., Balis M. E., Krenitsky T. A., Dancis J., Silvers D. N., Elion G. B., Gutman A. B. Rarity of X-linked partial hypoxanthine-guanine phosphoribosyltransferase deficiency in a large gouty population. Ann Intern Med. 1972 Feb;76(2):255–264. doi: 10.7326/0003-4819-76-2-255. [DOI] [PubMed] [Google Scholar]
- Zur Hausen H., Schulte-Holthausen H. Presence of EB virus nucleic acid homology in a "virus-free" line of Burkitt tumour cells. Nature. 1970 Jul 18;227(5255):245–248. doi: 10.1038/227245a0. [DOI] [PubMed] [Google Scholar]


