Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jul;71(7):2782–2786. doi: 10.1073/pnas.71.7.2782

In Vitro Synthesis of Rous Sarcoma Virus-Specific RNA is Catalyzed by a DNA-Dependent RNA Polymerase

L Rymo 1, J T Parsons 1, J M Coffin 1, C Weissmann 1
PMCID: PMC388555  PMID: 4368801

Abstract

Synthesis of Rous sarcoma virus RNA was examined in vitro with a new assay for radioactive virus-specific RNA. Nuclei from infected and uninfected cells were incubated with ribonucleoside [α-32P]triphosphates, Mn++, Mg++ and (NH4)2SO4. Incorporation into total and viral RNA proceeded with similar kinetics for up to 25 min at 37°. About 0.5% of the RNA synthesized by the infected system was scored as virus-specific, compared to 0.03% of the RNA from the uninfected system and 0.005% of the RNA synthesized by monkey kidney cell nuclei. Preincubation with DNase or actinomycin D completely suppressed total and virus-specific RNA synthesis. α-Amanitin, a specific inhibitor of eukaryotic RNA polymerase II, completely inhibited virus-specific RNA synthesis, while reducing total RNA synthesis by only 50%. We conclude that tumor virus-specific RNA is synthesized on a DNA template, most probably by the host's RNA polymerase II.

Keywords: actinomycin D, α-amanitin, assay of virus-specific RNA

Full text

PDF
2782

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bader J. P., Brown N. R. Induction of mutations in an RNA tumour virus by an analogue of a DNA precursor. Nat New Biol. 1971 Nov 3;234(44):11–12. doi: 10.1038/newbio234011a0. [DOI] [PubMed] [Google Scholar]
  3. Baluda M. A., Nayak D. P. Incorporation of precursors into ribonucleic acid, protein, glycoprotein, and lipoprotein of avian myeloblastosis virions. J Virol. 1969 Nov;4(5):554–566. doi: 10.1128/jvi.4.5.554-566.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baluda M. A. Widespread presence, in chickens, of DNA complementary to the RNA genome of avian leukosis viruses. Proc Natl Acad Sci U S A. 1972 Mar;69(3):576–580. doi: 10.1073/pnas.69.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biswal N., Benyesh-Melnick M. Characterization of the complementary nuclear RNA of murine sarcoma-leukemia virus. Virology. 1970 Dec;42(4):1064–1072. doi: 10.1016/0042-6822(70)90354-5. [DOI] [PubMed] [Google Scholar]
  6. Goldberg I. H., Friedman P. A. Antibiotics and nucleic acids. Annu Rev Biochem. 1971;40:775–810. doi: 10.1146/annurev.bi.40.070171.004015. [DOI] [PubMed] [Google Scholar]
  7. Hayward W. S., Hanafusa H. Detection of avian tumor virus RNA in uninfected chicken embryo cells. J Virol. 1973 Feb;11(2):157–167. doi: 10.1128/jvi.11.2.157-167.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hiramaru M., Uchida T., Egami F. Ribonuclease preparation for the base analysis of polyribonucleotides. Anal Biochem. 1966 Oct;17(1):135–142. doi: 10.1016/0003-2697(66)90016-9. [DOI] [PubMed] [Google Scholar]
  9. Kedinger C., Gissinger F., Gniazdowski M., Mandel J. L., Chambon P. Animal DNA-dependent RNA polymerases. 1. Large-scale solubilization and separation of A and B calf-thymus RNA-polymerase activities. Eur J Biochem. 1972 Jul 13;28(2):269–276. doi: 10.1111/j.1432-1033.1972.tb01910.x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science. 1970 Oct 23;170(3956):447–449. doi: 10.1126/science.170.3956.447. [DOI] [PubMed] [Google Scholar]
  12. Neiman P. E. Rous sarcoma virus nucleotide sequences in cellular DNA: measurement by RNA-DNA hybridization. Science. 1972 Nov 17;178(4062):750–753. doi: 10.1126/science.178.4062.750. [DOI] [PubMed] [Google Scholar]
  13. Parsons J. T., Coffin J. M., Haroz R. K., Bromley P. A., Weissmann C. Quantitative determination and location of newly synthesized virus-specific ribonucleic acid in chicken cells infected with Rous sarcoma virus. J Virol. 1973 May;11(5):761–774. doi: 10.1128/jvi.11.5.761-774.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Price R., Penman S. Transcription of the adenovirus genome by an -amanitine-sensitive ribonucleic acid polymerase in HeLa cells. J Virol. 1972 Apr;9(4):621–626. doi: 10.1128/jvi.9.4.621-626.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roeder R. G., Rutter W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969 Oct 18;224(5216):234–237. doi: 10.1038/224234a0. [DOI] [PubMed] [Google Scholar]
  16. Symons R. H. Preparation of [alpha-32P]nucleoside and deoxynucleoside 5'-triphosphates from 32Pi and protected and unprotected nucleosides. Biochim Biophys Acta. 1969 Oct 22;190(2):548–550. doi: 10.1016/0005-2787(69)90105-1. [DOI] [PubMed] [Google Scholar]
  17. TEMIN H. M. THE EFFECTS OF ACTINOMYCIN D ON GROWTH OF ROUS SARCOMA VIRUS IN VITRO. Virology. 1963 Aug;20:577–582. doi: 10.1016/0042-6822(63)90282-4. [DOI] [PubMed] [Google Scholar]
  18. Temin H. M., Baltimore D. RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res. 1972;17:129–186. doi: 10.1016/s0065-3527(08)60749-6. [DOI] [PubMed] [Google Scholar]
  19. Temin H. M. Mechanism of cell transformation by RNA tumor viruses. Annu Rev Microbiol. 1971;25:609–648. doi: 10.1146/annurev.mi.25.100171.003141. [DOI] [PubMed] [Google Scholar]
  20. Vanderheiden B. S., Boszormenyi-Nagy I. Preparation of 32-P-labeled nucleotides. Anal Biochem. 1965 Dec;13(3):496–504. doi: 10.1016/0003-2697(65)90343-x. [DOI] [PubMed] [Google Scholar]
  21. Varmus H. E., Weiss R. A., Friis R. R., Levinson W., Bishop J. M. Detection of avian tumor virus-specific nucleotide sequences in avian cell DNAs (reassociation kinetics-RNA tumor viruses-gas antigen-Rous sarcoma virus, chick cells). Proc Natl Acad Sci U S A. 1972 Jan;69(1):20–24. doi: 10.1073/pnas.69.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wallace R. D., Kates J. State of adenovirus 2 deoxyribonucleic acid in the nucleus and its mode of transcription: studies with isolated viral deoxyribonucleic acid-protein complexes and isolated nuclei. J Virol. 1972 Apr;9(4):627–635. doi: 10.1128/jvi.9.4.627-635.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiss S. B. ENZYMATIC INCORPORATION OF RIBONUCLEOSIDE TRIPHOSPHATES INTO THE INTERPOLYNUCLEOTIDE LINKAGES OF RIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1020–1030. doi: 10.1073/pnas.46.8.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zanetti M., Foa L., Costanzo F., La Placa M. Specific inhibition of Rous sarcoma virus by -amanitin. Arch Gesamte Virusforsch. 1971;34(4):255–260. doi: 10.1007/BF01242970. [DOI] [PubMed] [Google Scholar]
  25. Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES