Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jul;71(7):2791–2794. doi: 10.1073/pnas.71.7.2791

The Structure and Synthesis of Malformin A

Miklos Bodanszky 1, Glenn L Stahl 1
PMCID: PMC388557  PMID: 4528068

Abstract

A structure (the disulfide form of cyclo-D-cysteinyl-L-valyl-D-cysteinyl-D-leucyl-L-isoleucyl), previously proposed for malformin A, was reexamined. On the basis of chemical degradations, a different structure (the disulfide form of cyclo-D-cysteinyl-D-cysteinyl-L-valyl-D-leucyl-L-isoleucyl) was established. Accordingly, a compound with this structure was synthesized and was found to be identical with malformin A. The synthetic product causes curvatures on corn roots; maximum effect was seen at a concentration of 0.1 μg/ml, the optimal concentration for malformin A.

Keywords: root-curvature, cyclic pentapeptide, disulfide, sequence

Full text

PDF
2791

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODANSZKY M. Synthesis of peptides by aminolysis of nitrophenyl esters. Nature. 1955 Apr 16;175(4459):685–685. doi: 10.1038/175685a0. [DOI] [PubMed] [Google Scholar]
  2. CURTIS R. W. Root curvatures induced by culture filtrates of Aspergillus niger. Science. 1958 Sep 19;128(3325):661–662. doi: 10.1126/science.128.3325.661. [DOI] [PubMed] [Google Scholar]
  3. Casey J. P., Martin R. B. Disulfide stereochemistry. Conformations and chiroptical properties of L-Cystine derivatives. J Am Chem Soc. 1972 Aug 23;94(17):6141–6151. doi: 10.1021/ja00772a036. [DOI] [PubMed] [Google Scholar]
  4. Curtis R. W. Curvatures and Malformations in Bean Plants Caused by Culture Filtrate of Aspergillus niger. Plant Physiol. 1958 Jan;33(1):17–22. doi: 10.1104/pp.33.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curtis R. W. Studies on response of bean seedlings & corn roots to malformin. Plant Physiol. 1961 Jan;36(1):37–43. doi: 10.1104/pp.36.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PARTRIDGE S. M., DAVIS H. F. Preferential release of aspartic acid during the hydrolysis of proteins. Nature. 1950 Jan 14;165(4185):62–62. doi: 10.1038/165062a0. [DOI] [PubMed] [Google Scholar]
  7. Ptak M. Conformation of malformin A: a proton magnetic resonance and a circular dichroism study. Biopolymers. 1973;12(7):1575–1589. doi: 10.1002/bip.1973.360120711. [DOI] [PubMed] [Google Scholar]
  8. Schöberl A., Rimpler M., Clauss E. Synthese eines cyclischen Cystin-Peptides mit der Wirksamkeit des Malformins. Naturwissenschaften. 1969 Oct;56(10):516–516. doi: 10.1007/BF00601977. [DOI] [PubMed] [Google Scholar]
  9. Schöberl A., Rimpler M., Clauss E. Synthese von Malformin und struktureller Analoga. Chem Ber. 1970;103(10):3159–3165. doi: 10.1002/cber.19701031019. [DOI] [PubMed] [Google Scholar]
  10. Schöberl A., Rimpler M., Clauss E. Untersuchungen zur Struktur von Malformin. II. Synthesen homodeter Cyclopeptide. Justus Liebigs Ann Chem. 1970 Dec;742:68–73. doi: 10.1002/jlac.19707420109. [DOI] [PubMed] [Google Scholar]
  11. Suda S., Curtis R. W. Antibiotic properties of malformin. Appl Microbiol. 1966 May;14(3):475–476. doi: 10.1128/am.14.3.475-476.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Takahashi N., Curtis R. W. Isolation & characterization of malformin. Plant Physiol. 1961 Jan;36(1):30–36. doi: 10.1104/pp.36.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES