Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jul;71(7):2838–2842. doi: 10.1073/pnas.71.7.2838

Studies of Transfer RNA Tertiary Structure by Singlet-Singlet Energy Transfer

Chih-Hsin Yang 1,, Dieter Söll 1
PMCID: PMC388567  PMID: 4527991

Abstract

Five species of tRNAs bearing two different fluorescent groups were synthesized. These were suitable for intramolecular distance measurements by singlet-singlet energy transfer. The efficiency of energy transfer was determined from the sensitized emission of the energy acceptor. With the assumption that the relative orientation of donor and acceptor is random, the apparent distances between the 5′-end and the 3′-end, the 4-thiouridine and the 3′-end, the pseudouridine and 3′-end, the pseudouridine and the dihydrouridine in Escherichia coli formyl methionine tRNA, and between the 2-thiouridine (in the anticodon) and the 3′-end in E. coli glutamate tRNA were calculated to be 24 Å, 38 Å, 55 Å, 36 Å, and >65 Å, respectively.

Keywords: fluorescent probes, tRNA modification

Full text

PDF
2838

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beardsley K., Cantor C. R. Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1970 Jan;65(1):39–46. doi: 10.1073/pnas.65.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beltchev Beltcho, Grunberg-Manago Marianne. Preparation of a pG-fragment from tRNA(Phe)(yeast) by chemical scission at the dihydrouracil, and inhibition of tRNA(Phe)(yeast) charging by this fragment when combined with the -CCA half of this tRNA. FEBS Lett. 1970 Dec 23;12(1):24–26. doi: 10.1016/0014-5793(70)80585-3. [DOI] [PubMed] [Google Scholar]
  3. CHURCHICH J. E. FLUORESCENCE STUDIES ON SOLUBLE RIBONUCLEIC ACID LABELLED WITH ACRIFLAVINE. Biochim Biophys Acta. 1963 Sep 24;75:274–276. doi: 10.1016/0006-3002(63)90608-5. [DOI] [PubMed] [Google Scholar]
  4. Eisinger J. Intramolecular energy transfer in adrenocorticotropin. Biochemistry. 1969 Oct;8(10):3902–3908. doi: 10.1021/bi00838a004. [DOI] [PubMed] [Google Scholar]
  5. Ghosh H. P., Söll D., Khorana H. G. Studies on polynucleotides. LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. J Mol Biol. 1967 Apr 28;25(2):275–298. doi: 10.1016/0022-2836(67)90142-8. [DOI] [PubMed] [Google Scholar]
  6. Igo-Kemenes T., Zachau H. G. On the specificity of the reduction of transfer ribonucleic acids with sodium borohydride. Eur J Biochem. 1969 Oct;10(3):549–556. doi: 10.1111/j.1432-1033.1969.tb00723.x. [DOI] [PubMed] [Google Scholar]
  7. Schwarz U., Lührmann R., Gassen H. G. On the mRNA induced conformational change of AA-tRNA exposing the T-pse-C-G sequence for binding to the 50S ribosomal subunit. Biochem Biophys Res Commun. 1974 Feb 4;56(3):807–814. doi: 10.1016/0006-291x(74)90677-9. [DOI] [PubMed] [Google Scholar]
  8. Shulman R. G., Hilbers C. W., Wong Y. P., Wong K. L., Lightfoot D. R., Reid B. R., Kearns D. R. Determination of secondary and tertiary structural features of transfer RNA molecules in solution by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2042–2045. doi: 10.1073/pnas.70.7.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  10. Suddath F. L., Quigley G. J., McPherson A., Sneden D., Kim J. J., Kim S. H., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature. 1974 Mar 1;248(5443):20–24. doi: 10.1038/248020a0. [DOI] [PubMed] [Google Scholar]
  11. Walker R. T., RajBhandary U. L. Studies on polynucleotides. CI. Escherichia coli tyrosine and formylmethionine transfer ribonucleic acids: effect of chemical modification of 4-thiouridine to uridine on their biological properties. J Biol Chem. 1972 Aug 10;247(15):4879–4892. [PubMed] [Google Scholar]
  12. Wintermeyer W., Zachau H. G. Replacement of Y base, dihydrouracil, and 7-methylguanine in tRNA by artificial odd bases. FEBS Lett. 1971 Nov 1;18(2):214–218. doi: 10.1016/0014-5793(71)80447-7. [DOI] [PubMed] [Google Scholar]
  13. Yang C. H., Söll D. Covalent attachment of a fluorescent group to 4-thiouridine in transfer RNA. J Biochem. 1973 Jun;73(6):1243–1247. doi: 10.1093/oxfordjournals.jbchem.a130197. [DOI] [PubMed] [Google Scholar]
  14. Yang C. H., Söll D. Covalent attachment of fluorescent groups to the 5'-end of transfer RNA. Arch Biochem Biophys. 1973 Mar;155(1):70–81. doi: 10.1016/s0003-9861(73)80010-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES