Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jul;71(7):2848–2852. doi: 10.1073/pnas.71.7.2848

On Some Principles Governing Molecular Evolution*

Motoo Kimura 1,, Tomoko Ohta 1,
PMCID: PMC388569  PMID: 4527913

Abstract

The following five principles were deduced from the accumulated evidence on molecular evolution and theoretical considerations of the population dynamics of mutant substitutions: (i) for each protein, the rate of evolution in terms of amino acid substitutions is approximately constant/site per year for various lines, as long as the function and tertiary structure of the molecule remain essentially unaltered. (ii) Functionally less important molecules or parts of a molecule evolve (in terms of mutant substitutions) faster than more important ones. (iii) Those mutant substitutions that disrupt less the existing structure and function of a molecule (conservative substitutions) occur more frequently in evolution than more disruptive ones. (iv) Gene duplication must always precede the emergence of a gene having a new function. (v) Selective elimination of definitely deleterious mutants and random fixation of selectively neutral or very slightly deleterious mutants occur far more frequently in evolution than positive Darwinian selection of definitely advantageous mutants.

Keywords: population genetics, mutational pressure, negative selection, random drift

Full text

PDF
2848

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Air G. M., Thompson E. O., Richardson B. J., Sharman G. B. Amino-acid sequences of kangaroo myoglobin and haemoglobin and the date of marsupial-eutherian divergence. Nature. 1971 Feb 5;229(5284):391–394. doi: 10.1038/229391a0. [DOI] [PubMed] [Google Scholar]
  2. Barnard E. A., Cohen M. S., Gold M. H., Kim J. K. Evolution of ribonuclease in relation to polypeptide folding mechanisms. Nature. 1972 Dec 15;240(5381):395–398. doi: 10.1038/240395a0. [DOI] [PubMed] [Google Scholar]
  3. Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. C., Mercola D. A., Vijayan M. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature. 1971 Jun 25;231(5304):506–511. doi: 10.1038/231506a0. [DOI] [PubMed] [Google Scholar]
  4. Boyer S. H., Crosby E. F., Thurmon T. F., Noyes A. N., Fuller G. F., Leslie S. E., Shepard M. K., Herndon C. N. Hemoglobins A and A2 in New World primates: comparative variation and its evolutionary implications. Science. 1969 Dec 12;166(3911):1428–1431. doi: 10.1126/science.166.3911.1428. [DOI] [PubMed] [Google Scholar]
  5. Clarke B. Selective constraints on amino-acid substitutions during the evolution of proteins. Nature. 1970 Oct 10;228(5267):159–160. doi: 10.1038/228159a0. [DOI] [PubMed] [Google Scholar]
  6. Dickerson R. E. The structures of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45. doi: 10.1007/BF01659392. [DOI] [PubMed] [Google Scholar]
  7. Epstein C. J. Non-randomness of amino-acid changes in the evolution of homologous proteins. Nature. 1967 Jul 22;215(5099):355–359. doi: 10.1038/215355a0. [DOI] [PubMed] [Google Scholar]
  8. Fitch W. M., Markowitz E. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet. 1970 Oct;4(5):579–593. doi: 10.1007/BF00486096. [DOI] [PubMed] [Google Scholar]
  9. Goodman M., Barnabas J., Matsuda G., Moore G. W. Molecular evolution in the descent of man. Nature. 1971 Oct 29;233(5322):604–613. doi: 10.1038/233604a0. [DOI] [PubMed] [Google Scholar]
  10. Holmquist R., Jukes T. H., Pangburn S. Evolution of transfer RNA. J Mol Biol. 1973 Jun 25;78(1):91–116. doi: 10.1016/0022-2836(73)90430-0. [DOI] [PubMed] [Google Scholar]
  11. INGRAM V. M. Gene evolution and the haemoglobins. Nature. 1961 Mar 4;189:704–708. doi: 10.1038/189704a0. [DOI] [PubMed] [Google Scholar]
  12. Jukes T. H. Comparisons of the polypeptide chains of globins. J Mol Evol. 1971;1(1):46–62. doi: 10.1007/BF01659393. [DOI] [PubMed] [Google Scholar]
  13. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  14. Kimura M., Ohta T. Mutation and evolution at the molecular level. Genetics. 1973 Apr;73(Suppl):19–35. [PubMed] [Google Scholar]
  15. Kimura M. The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1181–1188. doi: 10.1073/pnas.63.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
  17. Lanks K. W., Kitchin F. D. Conservative mutations in homologous proteins. Nature. 1970 May 23;226(5247):753–754. doi: 10.1038/226753a0. [DOI] [PubMed] [Google Scholar]
  18. Li S. L., Denney R. M., Yanofsky C. Nucleotide sequence divergence in the -chain-structural genes of tryptophan synthetase from Escherichia coli, Salmonella typhimurium, and Aerobacter aerogenes. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1112–1116. doi: 10.1073/pnas.70.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Margoliash E., Fitch W. M., Dickerson R. E. Molecular expression of evolutinary phenomena in the primary and tertiary structures of cytochrome c. Brookhaven Symp Biol. 1968 Jun;21(2):259–305. [PubMed] [Google Scholar]
  20. Nei M. Gene duplication and nucleotide substitution in evolution. Nature. 1969 Jan 4;221(5175):40–42. doi: 10.1038/221040a0. [DOI] [PubMed] [Google Scholar]
  21. Ohta T., Kimura M. Functional organization of genetic material as a product of molecular evolution. Nature. 1971 Sep 10;233(5315):118–119. doi: 10.1038/233118a0. [DOI] [PubMed] [Google Scholar]
  22. Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. doi: 10.1038/246096a0. [DOI] [PubMed] [Google Scholar]
  23. Ono S. Ancient linkage groups and frozen accidents. Nature. 1973 Aug 3;244(5414):259–262. doi: 10.1038/244259a0. [DOI] [PubMed] [Google Scholar]
  24. Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
  25. Sarich V. M., Wilson A. C. Rates of albumin evolution in primates. Proc Natl Acad Sci U S A. 1967 Jul;58(1):142–148. doi: 10.1073/pnas.58.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sneath P. H. Relations between chemical structure and biological activity in peptides. J Theor Biol. 1966 Nov;12(2):157–195. doi: 10.1016/0022-5193(66)90112-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES