Abstract
A quantitatively consistent model of nerve activity is given in terms of two main biochemical cycles narrowly interlocked: an acetylcholine cycle and a calcium cycle. The activity of both cycles is controlled among other things by the electric field and various allosteric effectors. As shown by digital simulations our model accounts for the basic properties of an action potential as described by the electrophysiologists. Thus the shape, time course, and behavior under voltage clamping conditions of both sodium and potassium permeability variations are adequately reproduced.
Keywords: proteins and bioelectricity, impedance variation cycle, acetylcholine, calcium
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GLYNN I. M., SLAYMAN C. W., EICHBERG J., DAWSON R. M. THE ADENOSINE-TRIPHOSPHATASE SYSTEM RESPONSIBLE FOR CATION TRANSPORT IN ELECTRIC ORGAN: EXCLUSION OF PHOSPHOLIPIDS AS INTERMEDIATES. Biochem J. 1965 Mar;94:692–699. doi: 10.1042/bj0940692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gridelet J., Foidart J. M., Wins P. Contribution a l'étude des propriétés allostériques de l'acéthylcholinestérase. Arch Int Physiol Biochim. 1970 Apr;78(2):259–264. doi: 10.3109/13813457009103801. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
- Neumann E., Katchalsky A. Long-lived conformation changes induced by electric impulses in biopolymers. Proc Natl Acad Sci U S A. 1972 Apr;69(4):993–997. doi: 10.1073/pnas.69.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann E., Nachmansohn D., Katchalsky A. An attempt at an integral interpretation of nerve excitability. Proc Natl Acad Sci U S A. 1973 Mar;70(3):727–731. doi: 10.1073/pnas.70.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoffeniels E. Allostérie et perméabilité des membranes cellulaires. Arch Int Physiol Biochim. 1970 Apr;78(2):205–223. doi: 10.3109/13813457009103798. [DOI] [PubMed] [Google Scholar]
- Smythies J. R., Benington F., Bradley R. J., Bridgers W. F., Morin R. D. On the molecular mechanism of action of scorpion neurotoxin. II. From Androctonus australis Hector. J Theor Biol. 1974 Jan;43(1):65–72. doi: 10.1016/s0022-5193(74)80045-7. [DOI] [PubMed] [Google Scholar]
- Wins P., Schoffeniels E., Foidart J. M. Inhibition of membrane-bound acetylcholinesterase by d-tubocurarine and its reversal by bivalent cations. Life Sci. 1970 Mar 1;9(5):259–267. doi: 10.1016/0024-3205(70)90027-5. [DOI] [PubMed] [Google Scholar]