Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Aug;71(8):2928–2931. doi: 10.1073/pnas.71.8.2928

Inhibition of Polypeptide Chain Initiation in Escherichia coli by Elongation Factor G

Sylvia Lee-Huang 1,*, Henry Lee 1, Severo Ochoa 1,
PMCID: PMC388591  PMID: 4606669

Abstract

We have previously reported the isolation from E. coli of a specific inhibitor of polypeptide chain initiation that is rendered ineffective when active aminoacylation of transfer RNA is taking place; this is normally the case during natural messenger RNA translation. Surprisingly, the inhibitory activity appears to be a hitherto unrecognized property of the chain elongation factor G. The following hold for preparations purified for either translocase or inhibitor activity: (1) equal electrophoretic mobility on polyacrylamide gels; (2) equal specific activities for (a) inhibition of initiation, (b) translocation, and (c) ribosome-dependent, uncoupled GTPase; and (3) similar heat sensitivity of translocase and inhibitor activities in a temperature-sensitive E. coli mutant with an altered elongation factor G. Different sites are apparently involved in translocation and inhibition because the former, but not the latter, is sensitive to p-chloromercuribenzoate and fusidic acid.

Keywords: initiation complex, translocase activity

Full text

PDF
2928

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caskey T., Leder P., Moldave K., Schlessinger D. Translation: its mechanism and control. Science. 1972 Apr 14;176(4031):195–197. doi: 10.1126/science.176.4031.195. [DOI] [PubMed] [Google Scholar]
  3. Chinali G., Parmeggiani A. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site. Biochem Biophys Res Commun. 1973 Sep 5;54(1):33–39. doi: 10.1016/0006-291x(73)90884-x. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. Felicetti L., Tocchini-Valentini G. P., Di Matteo G. F. The role of G factor in protein synthesis. Studies on a temperature-sensitive Escherichia coli mutant with an altered G factor. Biochemistry. 1969 Aug;8(8):3428–3432. doi: 10.1021/bi00836a044. [DOI] [PubMed] [Google Scholar]
  6. Groner Y., Pollack Y., Berissi H., Revel M. Cistron specific translation control protein in Escherichia coli. Nat New Biol. 1972 Sep 6;239(88):16–19. doi: 10.1038/newbio239016a0. [DOI] [PubMed] [Google Scholar]
  7. Highland J. H., Lin L., Bodley J. W. Protection of ribosomes from thiostrepton inactivation by the binding of G factor and guanosine diphosphate. Biochemistry. 1971 Nov 23;10(24):4404–4409. doi: 10.1021/bi00800a009. [DOI] [PubMed] [Google Scholar]
  8. Kaziro Y., Inoue-Yokosawa N., Kawakita M. Studies on polypeptide elongation factor from E. coli. I. Crystalline factor G. J Biochem. 1972 Oct;72(4):853–863. doi: 10.1093/oxfordjournals.jbchem.a129980. [DOI] [PubMed] [Google Scholar]
  9. Kaziro Y., Inoue N. Crystalline G factor from Escherichia coli. J Biochem. 1968 Sep;64(3):423–425. doi: 10.1093/oxfordjournals.jbchem.a128913. [DOI] [PubMed] [Google Scholar]
  10. Kuwano M., Schlessinger D. G factor mutants of Escherichia coli: map location and properties. Biochem Biophys Res Commun. 1971 Feb 5;42(3):441–444. doi: 10.1016/0006-291x(71)90390-1. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lee-Huang S., Lee H., Ochoa S. A specific inhibitor of polypeptide-chain initiation in Escherichia coli. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2874–2878. doi: 10.1073/pnas.70.10.2874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee-Huang S., Ochoa S. Purification and properties of two messenger-discriminating species of E. coli initiation factor 3. Arch Biochem Biophys. 1973 May;156(1):84–96. doi: 10.1016/0003-9861(73)90344-5. [DOI] [PubMed] [Google Scholar]
  14. Lee-Huang S., Ochoa S. Specific inhibitors of MS2 and late T4 RNA translation in E. coli. Biochem Biophys Res Commun. 1972 Oct 17;49(2):371–376. doi: 10.1016/0006-291x(72)90420-2. [DOI] [PubMed] [Google Scholar]
  15. Meier D., Lee-Huang S., Ochoa S. Factor requirements for initiation complex formation with natural and synthetic messengers in Escherichia coli systems. J Biol Chem. 1973 Dec 25;248(24):8613–8615. [PubMed] [Google Scholar]
  16. Parmeggiani A., Gottschalk E. M. Isolation and some properties of the amino acid polymerization factors from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1969;34:377–384. doi: 10.1101/sqb.1969.034.01.044. [DOI] [PubMed] [Google Scholar]
  17. Tocchini-Valentini G. P., Mattoccia E. A mutant of E. coli with an altered supernatant factor. Proc Natl Acad Sci U S A. 1968 Sep;61(1):146–151. doi: 10.1073/pnas.61.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES