Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Aug;71(8):2988–2991. doi: 10.1073/pnas.71.8.2988

Acetylation of Reticulocyte Ribosomal Proteins at Time of Protein Biosynthesis

C C Liew *, C C Yip
PMCID: PMC388604  PMID: 4528404

Abstract

When rabbit reticulocytes were incubated in vitro with [3H]acetate, their ribosomal proteins were rapidly acetylated within 10 min. Polyacrylamide-urea gel electrophoresis showed that several major ribosomal protein fractions were highly acetylated. By the double-isotope labeling technique, the incorporation of [3H]acetate and [14C]aminoacid mixture into ribosomal proteins and nascent chains was found to be closely associated. Sodium fluoride abolished the acetylation of ribosomal proteins, whereas cycloheximide reduced the acetylation of ribosomal proteins to a much lower level. These findings suggest that acetylation of ribosomal proteins may be involved in the formation of the initiation complex during protein biosynthesis.

Keywords: sodium fluoride, cyclohexamide

Full text

PDF
2988

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkow K., Mizuno S., Fisher J. M., Rabinovitz M. Hemin control of globin synthesis: effect of a translational repressor on Met-tRNAf binding to the small ribosomal subunit and its relation to the activity and alailability of an initiation factor. Biochim Biophys Acta. 1973 Oct 26;324(3):397–409. doi: 10.1016/0005-2787(73)90284-0. [DOI] [PubMed] [Google Scholar]
  2. Eil C., Wool I. G. Phosphorylation of rat liver ribosomal subunits: partial purification of two cyclic AMP activated protein kinases. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1001–1009. doi: 10.1016/0006-291x(71)90561-4. [DOI] [PubMed] [Google Scholar]
  3. Jackson R., Hunter T. Role of methionine in the initiation of haemoglobin synthesis. Nature. 1970 Aug 15;227(5259):672–676. doi: 10.1038/227672a0. [DOI] [PubMed] [Google Scholar]
  4. Kabat D. Phosphorylation of ribosomal proteins in rabbit reticulocytes. Characterization and regulatory aspects. Biochemistry. 1970 Oct 13;9(21):4160–4175. doi: 10.1021/bi00823a019. [DOI] [PubMed] [Google Scholar]
  5. Kleinsmith L. J., Allfrey V. G., Mirsky A. E. Phosphorylation of nuclear protein early in the course of gene activation in lymphocytes. Science. 1966 Nov 11;154(3750):780–781. doi: 10.1126/science.154.3750.780. [DOI] [PubMed] [Google Scholar]
  6. LEBOY P. S., COX E. C., FLAKS J. G. THE CHROMOSOMAL SITE SPECIFYING A RIBOSOMAL PROTEIN IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Dec;52:1367–1374. doi: 10.1073/pnas.52.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liew C. C., Gornall A. G. Acetylation of ribosomal proteins. I. Characterization and properties of rat liver ribosomal proteins. J Biol Chem. 1973 Feb 10;248(3):977–983. [PubMed] [Google Scholar]
  8. Liew C. C., Korner A. The effect of cell-sap fractions on incorporation of amino acids into protein in rat liver cell-free systems. Can J Biochem. 1970 Jul;48(7):736–739. [PubMed] [Google Scholar]
  9. Lin S. Y., Mosteller R. D., Hardesty B. The mechanism of sodium fluoride and cycloheximide inhibition of hemoglobin biosynthesis in the cell-free reticulocyte system. J Mol Biol. 1966 Oct 28;21(1):51–69. doi: 10.1016/0022-2836(66)90079-9. [DOI] [PubMed] [Google Scholar]
  10. Louie A. J., Dixon G. H. Kinetics of enzymatic modification of the protamines and a proposal for their binding to chromatin. J Biol Chem. 1972 Dec 25;247(24):7962–7968. [PubMed] [Google Scholar]
  11. Lue P. F., Gornall A. G., Liew C. C. Two forms of histone-acetyltransferase in high salt extracts of rat liver nuclei. Can J Biochem. 1973 Aug;51(8):1177–1194. doi: 10.1139/o73-154. [DOI] [PubMed] [Google Scholar]
  12. Marbaix G., Burny A. Separation of the messenger RNA of reticulocyte polyribosomes. Biochem Biophys Res Commun. 1964 Aug 11;16(6):522–527. doi: 10.1016/0006-291x(64)90186-x. [DOI] [PubMed] [Google Scholar]
  13. Monneron A., Liew C. C., Allfrey V. G. Isolation and biological activity of mammalian helical polyribosomes. J Mol Biol. 1971 Apr 28;57(2):335–350. doi: 10.1016/0022-2836(71)90350-0. [DOI] [PubMed] [Google Scholar]
  14. Pogo B. G., Pogo A. O., Allfrey V. G., Mirsky A. E. Changing patterns of histone acetylation and RNA synthesis in regeneration of the liver. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1337–1344. doi: 10.1073/pnas.59.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suria D., Liew C. C. Isolation of nuclear acidic proteins from rat tissues. Characterization of acetylated liver nuclear acidic proteins. Biochem J. 1974 Feb;137(2):355–362. doi: 10.1042/bj1370355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES