Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Aug;71(8):3028–3030. doi: 10.1073/pnas.71.8.3028

The Importance of Gene Rearrangement in Evolution: Evidence from Studies on Rates of Chromosomal, Protein, and Anatomical Evolution

Allan C Wilson 1,2,3,*, Vincent M Sarich 1,2,3, Linda R Maxson 1,2,3
PMCID: PMC388613  PMID: 4528784

Abstract

We have compared the relative rates of protein evolution and chromosomal evolution in frogs and mammals. The average rate of change in chromosome number has been about 20 times faster in mammals than in frogs. Whereas it takes only 3.5 million years, on the average, for a pair of mammal species to develop a difference in chromosome number, the corresponding period for frogs is 70 million years. In contrast, the rate of protein evolution in mammals has been roughly equal to that in frogs. The rapid rate of gene rearrangement in mammals parallels both their rapid anatomical evolution and their rapid evolutionary loss of the potential for interspecific hybridization. Thus, gene rearrangements may be more important than point mutations as sources for evolutionary changes in anatomy and way of life.

Keywords: mammals, frogs, albumin, microcomplement fixation, chromosome number, mechanism of evolution

Full text

PDF
3028

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala F. J., Powell J. R., Tracey M. L. Enzyme variability in the Drosophila Willistoni group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet Res. 1972 Aug;20(1):19–42. doi: 10.1017/s0016672300013562. [DOI] [PubMed] [Google Scholar]
  2. Bachmann K., Goin O. B., Goin C. J. Nuclear DNA amounts in vertebrates. Brookhaven Symp Biol. 1972;23:419–450. [PubMed] [Google Scholar]
  3. Darnell J. E., Jelinek W. R., Molloy G. R. Biogenesis of mRNA: genetic regulation in mammalian cells. Science. 1973 Sep 28;181(4106):1215–1221. doi: 10.1126/science.181.4106.1215. [DOI] [PubMed] [Google Scholar]
  4. Davidson E. H., Britten R. J. Organization, transcription, and regulation in the animal genome. Q Rev Biol. 1973 Dec;48(4):565–613. doi: 10.1086/407817. [DOI] [PubMed] [Google Scholar]
  5. Duellman W. E. Additional studies of chromosomes of anuran amphibians. Syst Zool. 1967 Mar;16(1):38–43. [PubMed] [Google Scholar]
  6. John B., Lewis K. R. Chromosome variability and geographic distribution in insects. Science. 1966 May 6;152(3723):711–721. doi: 10.1126/science.152.3723.711. [DOI] [PubMed] [Google Scholar]
  7. Maxson L. R., Wilson A. C. Convergent morphological evolution detected by studying proteins of tree frogs in the Hyla eximia species group. Science. 1974 Jul 5;185(4145):66–68. doi: 10.1126/science.185.4145.66. [DOI] [PubMed] [Google Scholar]
  8. Nevo E., Shaw C. R. Genetic variation in a subterranean mammal, Spalax ehrenbergi. Biochem Genet. 1972 Dec;7(3):235–241. doi: 10.1007/BF00484821. [DOI] [PubMed] [Google Scholar]
  9. Sarich V. M. Generation time and albumin evolution. Biochem Genet. 1972 Dec;7(3):205–212. doi: 10.1007/BF00484818. [DOI] [PubMed] [Google Scholar]
  10. Sarich V. M. Pinniped phylogeny. Syst Zool. 1969 Dec;18(4):416–422. [PubMed] [Google Scholar]
  11. Sarich V. M., Wilson A. C. Generation time and genomic evolution in primates. Science. 1973 Mar 16;179(4078):1144–1147. doi: 10.1126/science.179.4078.1144. [DOI] [PubMed] [Google Scholar]
  12. Sarich V. M., Wilson A. C. Immunological time scale for hominid evolution. Science. 1967 Dec 1;158(3805):1200–1203. doi: 10.1126/science.158.3805.1200. [DOI] [PubMed] [Google Scholar]
  13. Sarich V. M., Wilson A. C. Rates of albumin evolution in primates. Proc Natl Acad Sci U S A. 1967 Jul;58(1):142–148. doi: 10.1073/pnas.58.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sparrow A. H., Price H. J., Underbrink A. G. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp Biol. 1972;23:451–494. [PubMed] [Google Scholar]
  15. Wallace D. G., Maxson L. R., Wilson A. C. Albumin evolution in frogs: a test of the evolutionary clock hypothesis. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3127–3129. doi: 10.1073/pnas.68.12.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wallace D. G., Wilson A. C. Comparison of frog albumins with those of other vertebrates. J Mol Evol. 1972 Dec 29;2(1):72–86. doi: 10.1007/BF01653944. [DOI] [PubMed] [Google Scholar]
  17. Wilson A. C., Maxson L. R., Sarich V. M. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2843–2847. doi: 10.1073/pnas.71.7.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES