Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4233–4237. doi: 10.1073/pnas.72.11.4233

Identification of NADPH-thioredoxin reductase system in Euglena gracillis.

S Munavalli, D V Parker, F D Hamilton
PMCID: PMC388694  PMID: 675

Abstract

Euglena gracilis contains a protein system which can utilize the reducing power of NADPH in the ribonucleotide reductase-catalyzed reduction of CTP. The proteins required for this reaction are a flavoprotien with a molecular weight of approximately 185,000 which is functionally similar to thioredoxin reductase (NADPH), EC 1.6.4.5, and another protein (Protein I) whose function in the reaction is unknown. This new protein does not appear to contain a prosthetic group and has a molecular weight of approximately 240,000. In addition, the ribonucleotide reductase active in the Euglena NADPH-thioredoxin reductase system is more complex than the protein reported in a previous publication [(1974) j. Biol. Chem. 249, 4428-4434]. The enzyme preparation described in this report contains four different types of polypeptide chains which may complex to form the active enzyme.

Full text

PDF
4233

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS R., DURAISWAMI S. DEOXYCYTIDYLATE FORMATION FROM CYTIDYLATE WITHOUT GLYCOSIDIC CLEAVAGE IN LACTOBACILLUS LEICHMANNII EXTRACTS CONTAINING VITAMIN B12 COENZYME. Biochem Biophys Res Commun. 1965 Feb 3;18:409–414. doi: 10.1016/0006-291x(65)90722-9. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. Eriksson S., Berglund O. Bacteriophage-induced ribonucleotide reductase systems. T5- and T6-specific ribonucleotide reductase and thioredoxin. Eur J Biochem. 1974 Jul 15;46(2):271–278. doi: 10.1111/j.1432-1033.1974.tb03619.x. [DOI] [PubMed] [Google Scholar]
  4. Gaertner F. H., DeMoss J. A. Purification and characterization of a multienzyme complex in the tryptophan pathway of Neurospora crassa. J Biol Chem. 1969 May 25;244(10):2716–2725. [PubMed] [Google Scholar]
  5. Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
  6. Gleason F. K., Hogenkamp H. P. 5'-deoxyadenosylcobalamin-dependent ribonucleotide reductase: a survey of its distribution. Biochim Biophys Acta. 1972 Sep 14;277(3):466–470. doi: 10.1016/0005-2787(72)90089-5. [DOI] [PubMed] [Google Scholar]
  7. Gonzalez Porqué P., Baldesten A., Reichard P. Purification of a thioredoxin system from yeast. J Biol Chem. 1970 May 10;245(9):2363–2370. [PubMed] [Google Scholar]
  8. Hamilton F. D. Ribonucleotide reductase from Euglena gracilis. A 5'-deoxyadenoslycobalamin-dependent enzyme. J Biol Chem. 1974 Jul 25;249(14):4428–4434. [PubMed] [Google Scholar]
  9. Herrmann E. C., Moore E. C. Purification of thioredoxin from rat Novikoff ascites hepatoma. J Biol Chem. 1973 Feb 25;248(4):1219–1223. [PubMed] [Google Scholar]
  10. Hopper S. Ribonucleotide reductase of rabbit bone marrow. I. Purification, properties, and separation into two protein fractions. J Biol Chem. 1972 May 25;247(10):3336–3340. [PubMed] [Google Scholar]
  11. LAURENT T. C., MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3436–3444. [PubMed] [Google Scholar]
  12. Larson G., Larsson A. Purification and properties of rat-liver thioredoxin. Eur J Biochem. 1972 Mar 15;26(1):119–124. doi: 10.1111/j.1432-1033.1972.tb01747.x. [DOI] [PubMed] [Google Scholar]
  13. Larsson A. Thioredoxin reductase from rat liver. Eur J Biochem. 1973 Jun;35(2):346–349. doi: 10.1111/j.1432-1033.1973.tb02845.x. [DOI] [PubMed] [Google Scholar]
  14. MOORE E. C., REICHARD P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. VI. THE CYTIDINE DIPHOSPHATE REDUCTASE SYSTEM FROM NOVIKOFF HEPATOMA. J Biol Chem. 1964 Oct;239:3453–3456. [PubMed] [Google Scholar]
  15. MOORE E. C., REICHARD P., THELANDER L. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES.V. PURIFICATION AND PROPERTIES OF THIOREDOXIN REDUCTASE FROM ESCHERICHIA COLI B. J Biol Chem. 1964 Oct;239:3445–3452. [PubMed] [Google Scholar]
  16. Orr M. D., Vitols E. Thioredoxin from Lactobacillus leichmannii and its role as hydrogen donor for ribonucleoside triphosphate reductase. Biochem Biophys Res Commun. 1966 Oct 5;25(1):109–115. doi: 10.1016/0006-291x(66)90647-4. [DOI] [PubMed] [Google Scholar]
  17. REICHARD P. Enzymatic synthesis of deoxyribonucleotides. I. Formation of deoxycytidine diphosphate from cytidine diphosphate with enzymes from Escherichia coli. J Biol Chem. 1962 Nov;237:3513–3519. [PubMed] [Google Scholar]
  18. Sjöberg B. M. Studies on the structure of T4 thioredoxin. I. Isolation and amino acid sequence of the peptides obtained from a tryptic digest of the protein. J Biol Chem. 1972 Dec 25;247(24):8058–8062. [PubMed] [Google Scholar]
  19. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES