Abstract
First identified in 1982 as a human pathogen, enterohemorrhagic Escherichia coli of the O157:H7 serotype is a major cause of food-borne acquired human infections. Here, we report the genome sequence of the first known strain of this serotype isolated in the United States.
GENOME ANNOUNCEMENT
Since the initial report in 1982 that Escherichia coli O157:H7 is associated with severe human disease, the serotype O157:H7 has assumed a position of dominance among enterohemorrhagic E. coli (EHEC) serotypes in North America responsible for global widespread outbreaks of severe gastrointestinal disease (1, 2). This lineage of Shiga toxin-producing E. coli (STEC) O157:H7 is non-sorbitol fermenting and β-glucuronidase negative and has evolved from an O55:H7 progenitor (3, 4). The isolation in 1975 of this E. coli O157:H7 strain, designated 2886-75, from an adult with hemorrhagic colitis (HC) (5, 6) predated the 1982 Oregon and Michigan hamburger-associated E. coli O157:H7 outbreaks (6). Since 1982, this serogroup has emerged as the dominant cause of EHEC infections in North America. Infections typically present with symptoms of bloody diarrhea coupled with severe abdominal pain (5, 6) but can rapidly progress to life-threatening complications, such as hemolytic uremic syndrome (HUS), HC, and central nervous system failure (7–12).
Genomic DNA was subjected to Illumina sequencing using paired-end libraries with 300-bp inserts on the HiSeq platform. The draft genome was assembled with Velvet assembler (13, 14), and the IGS Annotation Engine and Manatee were used for genome annotation and visualization (15). Availability of the high-quality genome sequence enabled the determination of the pathogenome virulence state (16) and phylogenomic grouping according to established genotypic classification methods using in-silico and experimental assays (17–20). PCR genotyping confirmed the stx genotype and determined the occupancy of both the yehV and wrbA bacteriophage insertion sites (21). Strain 2886-75 has an unusual genotype. Unlike the majority of E. coli O157:H7 recovered from humans in the United States (22–24), this isolate is stx1 positive and stx2 negative. The yehV site is occupied by the stx1 bacteriophage that is not stably integrated. Hence, the genomic architecture does not fit the emergence scenario typical of other human-pathogenic E. coli O157:H7 strains, and this isolate cannot be placed into clusters 1, 2, or 3 (25). However, this strain shows other typical genetic hallmarks of EHEC. Strain 2886-75 carries the lineage-specific virulence plasmid pO157 (26, 27), the T allele of the translocated intimin receptor (tir) (255 T>A), and a chimeric polymorphic variant of repeat region 1 (RR1) with the absence of the repeat regions RR2 and RR3, placing strain 2886-75 closest to group 8 (28). Multilocus sequence typing (MLST) (18) based on the nucleotide sequences of 15 housekeeping genes revealed that 2886-75 exhibits allele combination 23.11 (19) and belongs to the sequence type 11 (ST11) and complex/ABD group (18, 20). Strain 2886-75 is a representative of lineage I (17, 29) and clade 3.16 (30). The genome sequence presented here will be a valuable resource in studying E. coli O157:H7 pathogenome evolution by comparing this isolate to the extant genotypes and will aid in the development of a higher-resolution phylogenomic framework for improved molecular-guided pathogen surveillance and outbreak investigations (10, 11, 31).
Nucleotide sequence accession number.
This genome sequence is deposited in GenBank under the accession number AVRR00000000. A bacterial strain culture is available from the Biodefense and Emerging Infections Research Resources Repository (http://www.beiresources.org/).
ACKNOWLEDGMENTS
This project was funded in part by federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the Department of Health and Human Services (under contract number HHSN272200900009C), and received computational support from the Computational System Biology Core at the University of Texas at San Antonio and the South Texas Center for Emerging Infectious Diseases (STCEID). F.S. is supported in part by a stipend from STCEID.
Footnotes
Citation Sanjar F, Hazen TH, Shah SM, Koenig SSK, Agrawal S, Daugherty S, Sadzewicz L, Tallon LJ, Mammel MK, Feng P, Soderlund R, Tarr PI, DebRoy C, Dudley EG, Cebula TA, Ravel J, Fraser CM, Rasko DA, Eppinger M. 2014. Genome sequence of Escherichia coli O157:H7 strain 2886-75, associated with the first reported case of human infection in the United States. Genome Announc. 2(1):e01120-13. doi:10.1128/genomeA.01120-13.
REFERENCES
- 1. Lowe RM, Baines D, Selinger LB, Thomas JE, McAllister TA, Sharma R. 2009. Escherichia coli O157:H7 strain origin, lineage, and Shiga toxin 2 expression affect colonization of cattle. Appl. Environ. Microbiol. 75:5074–5081. 10.1128/AEM.00391-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Beutin L. 2006. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. J. Vet. Med. B Infect. Dis. Vet. Public Health 53:299–305. 10.1111/j.1439-0450.2006.00968.x [DOI] [PubMed] [Google Scholar]
- 3. Leopold SR, Magrini V, Holt NJ, Shaikh N, Mardis ER, Cagno J, Ogura Y, Iguchi A, Hayashi T, Mellmann A, Karch H, Besser TE, Sawyer SA, Whittam TS, Tarr PI. 2009. A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc. Natl. Acad. Sci. U. S. A. 106:8713–8718. 10.1073/pnas.0812949106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T. 2009. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5 e1000408. 10.1371/journal.ppat.1000408 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308:681–685. 10.1056/NEJM198303243081203 [DOI] [PubMed] [Google Scholar]
- 6. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol. 18:512–520 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Riley DG, Gray JT, Loneragan GH, Barling KS, Chase CC., Jr. 2003. Escherichia coli O157:H7 prevalence in fecal samples of cattle from a southeastern beef cow-calf herd. J. Food Prot. 66:1778–1782 [DOI] [PubMed] [Google Scholar]
- 8. Besser RE, Griffin PM, Slutsker L. 1999. Escherichia coli O157:H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease. Annu. Rev. Med. 50:355–367. 10.1146/annurev.med.50.1.355 [DOI] [PubMed] [Google Scholar]
- 9. Cimolai N, Morrison BJ, Carter JE. 1992. Risk factors for the central nervous system manifestations of gastroenteritis-associated hemolytic-uremic syndrome. Pediatrics 90:616–621 [PubMed] [Google Scholar]
- 10. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. 2011. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc. Natl. Acad. Sci. U. S. A. 108:20142–20147. 10.1073/pnas.1107176108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. 2011. Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl. Environ. Microbiol. 77:2916–2925. 10.1128/AEM.02554-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Chaisri U, Nagata M, Kurazono H, Horie H, Tongtawe P, Hayashi H, Watanabe T, Tapchaisri P, Chongsa-nguan M, Chaicumpa W. 2001. Localization of Shiga toxins of enterohaemorrhagic Escherichia coli in kidneys of paediatric and geriatric patients with fatal haemolytic uraemic syndrome. Microb. Pathog. 31:59–67. 10.1006/mpat.2001.0447 [DOI] [PubMed] [Google Scholar]
- 13. Zerbino DR. 2010. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinformatics chapter 11:Unit 1115. 10.1002/0471250953.bi1105s31 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829. 10.1101/gr.074492.107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S, White O, Wortman J, Mahurkar A, Giglio MG. 2011. The IGS standard operating procedure for automated prokaryotic annotation. Stand. Genomic Sci. 4:244–251. 10.4056/sigs.1223234 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Besser TE, Shaikh N, Holt NJ, Tarr PI, Konkel ME, Malik-Kale P, Walsh CW, Whittam TS, Bono JL. 2007. Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl. Environ. Microbiol. 73:671–679. 10.1128/AEM.01035-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Yang Z, Kovar J, Kim J, Nietfeldt J, Smith DR, Moxley RA, Olson ME, Fey PD, Benson AK. 2004. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl. Environ. Microbiol. 70:6846–6854. 10.1128/AEM.70.11.6846-6854.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Rajkhowa S, Scaria J, Garcia DL, Musser KA, Akey BL, Chang YF. 2010. Analysis of Escherichia coli O157 clinical isolates by multilocus sequence typing. BMC Res. Notes 3:343. 10.1186/1756-0500-3-343 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60:1136–1151. 10.1111/j.1365-2958.2006.05172.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS. 2000. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64–67. 10.1038/35017546 [DOI] [PubMed] [Google Scholar]
- 21. Shaikh N, Tarr PI. 2003. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J. Bacteriol. 185:3596–3605. 10.1128/JB.185.12.3596-3605.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Tarr PI, Neill MA, Clausen CR, Newland JW, Neill RJ, Moseley SL. 1989. Genotypic variation in pathogenic Escherichia coli O157:H7 isolated from patients in Washington, 1984–1987. J. Infect. Dis. 159:344–347 [DOI] [PubMed] [Google Scholar]
- 23. Jelacic S, Wobbe CL, Boster DR, Ciol MA, Watkins SL, Tarr PI, Stapleton AE. 2002. ABO and P1 blood group antigen expression and stx genotype and outcome of childhood Escherichia coli O157:H7 infections. J. Infect. Dis. 185:214–219. 10.1086/338480 [DOI] [PubMed] [Google Scholar]
- 24. Jelacic JK, Damrow T, Chen GS, Jelacic S, Bielaszewska M, Ciol M, Carvalho HM, Melton-Celsa AR, O’Brien AD, Tarr PI. 2003. Shiga toxin-producing Escherichia coli in Montana: bacterial genotypes and clinical profiles. J. Infect. Dis. 188:719–729. 10.1086/376999 [DOI] [PubMed] [Google Scholar]
- 25. Shaikh N, Holt NJ, Johnson JR, Tarr PI. 2007. Fim operon variation in the emergence of enterohemorrhagic Escherichia coli: an evolutionary and functional analysis. FEMS Microbiol. Lett. 273:58–63. 10.1111/j.1574-6968.2007.00781.x [DOI] [PubMed] [Google Scholar]
- 26. Lim JY, Yoon J, Hovde CJ. 2010. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20:5–14 [PMC free article] [PubMed] [Google Scholar]
- 27. Lee JE, Reed J, Shields MS, Spiegel KM, Farrell LD, Sheridan PP. 2007. Phylogenetic analysis of Shiga toxin 1 and Shiga toxin 2 genes associated with disease outbreaks. BMC Microbiol. 7:109. 10.1186/1471-2180-7-109 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Bono JL, Keen JE, Clawson ML, Durso LM, Heaton MP, Laegreid WW. 2007. Association of Escherichia coli O157:H7 tir polymorphisms with human infection. BMC Infect. Dis. 7:98. 10.1186/1471-2334-7-98 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Laing CR, Buchanan C, Taboada EN, Zhang Y, Karmali MA, Thomas JE, Gannon VP. 2009. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genomics 10:287. 10.1186/1471-2164-10-287 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mladonicky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D, Whittam TS. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. U. S. A. 105:4868–4873. 10.1073/pnas.0710834105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Eppinger M, Daugherty S, Agrawal S, Galens K, Sengamalay N, Sadzewicz L, Tallon L, Cebula TA, Mammel MK, Feng P, Soderlund R, Tarr PI, Debroy C, Dudley EG, Fraser CM, Ravel J. 2013. Whole-genome draft sequences of 26 enterohemorrhagic Escherichia coli O157:H7 strains. Genome Announc. 1(2):e00134-12. 10.1128/genomeA.00134-12 [DOI] [PMC free article] [PubMed] [Google Scholar]