Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4265–4269. doi: 10.1073/pnas.72.11.4265

Enzymatic induction of DNA double-strand breaks in gamma-irradiated Escherichia coli K-12.

T Bonura, K C Smith, H S Kaplan
PMCID: PMC388701  PMID: 1105577

Abstract

The polA1 mutation increases the sensitivity of E. coli K-12 by killing by gamma-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol+ strain. This conclusion is based upon the observation that gamma-irradiation at 3 degrees did not affect the yield of DNA double-strand breaks in the pol+ strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 degrees followed by incubation at 3 degrees for 20 min before plating resulted in approximately a 1.5-fold increase in the D0. The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol+ strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA1 strain may be the result of the unsuccessful exision repair of ionizing radiation-induced DNA base damage.

Full text

PDF
4265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonura T., Smith K. C. Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12. J Bacteriol. 1975 Feb;121(2):511–517. doi: 10.1128/jb.121.2.511-517.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonura T., Town C. D., Smith K. C., Kaplan H. S. The influence of oxygen on the yield of DNA double-strand breaks in x-irradiated Escherichia coli K-12. Radiat Res. 1975 Sep;63(3):567–577. [PubMed] [Google Scholar]
  3. Burrell A. D., Feldschreiber P., Dean C. J. DNA-membrane association and the repair of double breaks in x-irradiated Micrococcus radiodurans. Biochim Biophys Acta. 1971 Sep 30;247(1):38–53. doi: 10.1016/0005-2787(71)90805-7. [DOI] [PubMed] [Google Scholar]
  4. Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and the rec system in excision-repair in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1156–1160. doi: 10.1073/pnas.69.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Corry P. M., Cole A. Double strand rejoining in mammalian DNA. Nat New Biol. 1973 Sep 26;245(143):100–101. [PubMed] [Google Scholar]
  6. Dugle D. L., Dugle J. R. Gamma-ray induced strand breakage of Bacillus subtilis DNA irradiated in vivo. Can J Microbiol. 1971 May;17(5):575–583. doi: 10.1139/m71-095. [DOI] [PubMed] [Google Scholar]
  7. Ganesan A. K., Smith K. C. Dark recovery processes in Escherichia coli irradiated with ultraviolet light. I. Effect of rec mutations on liquid holding recovery. J Bacteriol. 1968 Aug;96(2):365–373. doi: 10.1128/jb.96.2.365-373.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hariharan P. V., Cerutti P. A. Excision of damaged thymine residues from gamma-irradiated poly(dA-dT) by crude extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3532–3536. doi: 10.1073/pnas.71.9.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hariharan P. V., Cerutti P. A. Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol. 1972 Apr 28;66(1):65–81. doi: 10.1016/s0022-2836(72)80006-8. [DOI] [PubMed] [Google Scholar]
  10. Hariharan P. V., Hutchinson F. Neutral sucrose gradient sedimentation of very large DNA from Bacillus subtilis. II. Double-strand breaks formed by gamma ray irradiation of the cells. J Mol Biol. 1973 Apr 15;75(3):479–494. doi: 10.1016/0022-2836(73)90455-5. [DOI] [PubMed] [Google Scholar]
  11. Harm W. Effects of dose fractionation on ultraviolet survival of Escherichia coli. Photochem Photobiol. 1968 Jan;7(1):73–86. doi: 10.1111/j.1751-1097.1968.tb05831.x. [DOI] [PubMed] [Google Scholar]
  12. Kanner L., Hanawalt P. Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):149–155. doi: 10.1016/0006-291x(70)90770-9. [DOI] [PubMed] [Google Scholar]
  13. Kaplan H. S. DNA-strand scission and loss of viability after x irradiation of normal and sensitized bacterial cells. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1442–1446. doi: 10.1073/pnas.55.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kitayama S., Matsuyama A. Possibility of the repair of double-strand scissions in Micrococcus radiodurans DNA caused by gamma-rays. Biochem Biophys Res Commun. 1968 Nov 8;33(3):418–422. doi: 10.1016/0006-291x(68)90588-3. [DOI] [PubMed] [Google Scholar]
  15. Lett J. T., Caldwell I., Little J. G. Repair of x-ray damage to the DNA in Micrococcus radiodurans: the effect of 5-bromodeoxyuridine. J Mol Biol. 1970 Mar;48(3):395–408. doi: 10.1016/0022-2836(70)90053-7. [DOI] [PubMed] [Google Scholar]
  16. Paterson M. C., Boyle J. M., Setlow R. B. Ultraviolet- and X-ray-induced responses of a deoxyribonucleic acid polymerase-deficient mutant of Escherichia coli. J Bacteriol. 1971 Jul;107(1):61–67. doi: 10.1128/jb.107.1.61-67.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paterson M. C., Setlow R. B. Endonucleolytic activity from Micrococcus luteus that acts on -ray-induced damage in plasmid DNA of Escherichia coli minicells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2927–2931. doi: 10.1073/pnas.69.10.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Payes B. Enzymatic repair of x-ray-damaged DNA. I. Labeling of the precursor of a malonaldehyde-like material in X-irradiated DNA and the enzymatic excision of labeled lesions. Biochim Biophys Acta. 1974 Oct 28;366(3):251–260. [PubMed] [Google Scholar]
  19. STAPLETON G. E., BILLEN D., HOLLAENDER A. Recovery of x-irradiated bacteria at suboptimal incubation temperatures. J Cell Physiol. 1953 Apr;41(2):345–357. doi: 10.1002/jcp.1030410211. [DOI] [PubMed] [Google Scholar]
  20. Setlow R. B., Carrier W. L. Endonuclease activity toward DNA irradiated in vitro by gamma rays. Nat New Biol. 1973 Feb 7;241(110):170–172. doi: 10.1038/newbio241170a0. [DOI] [PubMed] [Google Scholar]
  21. Swinehart J. L., Lin W. S., Cerutti P. A. Gamma-ray induced damage in thymine in mononucleotide mixtures, and in single- and double-stranded DNA. Radiat Res. 1974 May;58(2):166–175. [PubMed] [Google Scholar]
  22. Town C. D., Smith K. C., Kaplan H. S. DNA polymerase required for rapid repair of x-ray--induced DNA strand breaks in vivo. Science. 1971 May 21;172(3985):851–854. doi: 10.1126/science.172.3985.851. [DOI] [PubMed] [Google Scholar]
  23. Wilkins R. J. Does Escherichia coli possess a DNA excision repair system for gamma-ray damage? Nat New Biol. 1973 Aug 29;244(139):269–271. doi: 10.1038/newbio244269a0. [DOI] [PubMed] [Google Scholar]
  24. Youngs D. A., Smith K. C. X-ray sensitivity and repair capacity of a polA1 exrA strain of Escherichia coli K-12. J Bacteriol. 1973 Apr;114(1):121–127. doi: 10.1128/jb.114.1.121-127.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES