Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4337–4340. doi: 10.1073/pnas.72.11.4337

Requirement for cellular protein synthesis in reversal of ethidium-bormide-induced inhibition of cell transformation by murine sarcoma virus.

R C Roa, S K Bose
PMCID: PMC388716  PMID: 172904

Abstract

Cultures of mouse Balb 3T3 fibroblasts exposed to a noncytotoxic dose of ethidium bromide for 16-18 hr are unable to produce foci after infection with murine sarcoma virus. Such cultures regain susceptibility to infection when incubated for 6-8 hr in drug-free growth medium. Pretreated but not untreated cultures exhibit sensitivity toward brief (6 hr) exposure to cycloheximide, chloramphenicol, and actinomycin D before infection. Pretreatment with cordy-cepin inhibits the ability of cultures to produce foci after infection. The recovery of ethidium-bromide-treated cultures requires the synthesis of cellular proteins which may have some important role in the establishment of RNA tumor virus infection.

Full text

PDF
4337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BADER J. P. THE ROLE OF DEOXYRIBONUCLEIC ACID IN THE SYNTHESIS OF ROUS SARCOMA VIRUS. Virology. 1964 Apr;22:462–468. doi: 10.1016/0042-6822(64)90067-4. [DOI] [PubMed] [Google Scholar]
  2. Bader J. P. Metabolic requirements for infection by Rous sarcoma virus. 3. The synthesis on viral DNA. Virology. 1972 May;48(2):485–493. doi: 10.1016/0042-6822(72)90059-1. [DOI] [PubMed] [Google Scholar]
  3. Bose S. K., Zlotnick B. J. Growth-and density-dependent inhibition of deoxyglucose transport in Balb 3T3 cells and its absence in cells transformed by murine sarcoma virus. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2374–2378. doi: 10.1073/pnas.70.8.2374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flechtner V. R., Sager R. Ethidium bromide induced selective and reversible loss of chloroplast DNA. Nat New Biol. 1973 Feb 28;241(113):277–279. doi: 10.1038/newbio241277a0. [DOI] [PubMed] [Google Scholar]
  5. Fridlender B., Weissbach A. DNA polymerases of tumor virus: specific effect of ethidium bromide on the use of different synthetic templates. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3116–3119. doi: 10.1073/pnas.68.12.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gianni A. M., Smotkin D., Weinberg R. A. Murine leukemia virus: detection of unintegrated double-stranded DNA forms of the provirus. Proc Natl Acad Sci U S A. 1975 Feb;72(2):447–451. doi: 10.1073/pnas.72.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  8. Guntaka R. V., Mahy B. W., Bishop J. M., Varmus H. E. Ethidium bromide inhibits appearance of closed circular viral DNA and integration of virus-specific DNA in duck cells infected by avian sarcoma virus. Nature. 1975 Feb 13;253(5492):507–511. doi: 10.1038/253507a0. [DOI] [PubMed] [Google Scholar]
  9. Hanafusa H., Baltimore D., Smoler D., Watson K. F., Yaniv A., Spiegelman S. Absence of polymerase protein in virions of alpha-type rous sarcoma virus. Science. 1972 Sep 29;177(4055):1188–1191. doi: 10.1126/science.177.4055.1188. [DOI] [PubMed] [Google Scholar]
  10. Hirschman S. Z. Inhibitors of DNA polymerases of murine leukemia viruses: activity of ethidium bromide. Science. 1971 Jul 30;173(3995):441–443. doi: 10.1126/science.173.3995.441. [DOI] [PubMed] [Google Scholar]
  11. Klietmann W., Kato K., Gabara B., Koprowski H., Sato N. Stable alterations in HeLa cell mitochondria following ethidium bromide treatment. Exp Cell Res. 1973 Mar 30;78(1):47–58. doi: 10.1016/0014-4827(73)90036-0. [DOI] [PubMed] [Google Scholar]
  12. Klietmann W., Kato K., Koprowski H. Maturation of infectious simian virus 40 in the presence of ethidium bromide. J Gen Virol. 1972 Apr;15(1):35–44. doi: 10.1099/0022-1317-15-1-35. [DOI] [PubMed] [Google Scholar]
  13. Leibowitz R. D. The effect of ethidium bromide on mitochondrial DNA synthesis and mitochondrial DNA structure in HeLa cells. J Cell Biol. 1971 Oct;51(1):116–122. doi: 10.1083/jcb.51.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linial M., Mason W. S. Characterization of two conditional early mutants of Rous sarcoma virus. Virology. 1973 May;53(1):258–273. doi: 10.1016/0042-6822(73)90484-4. [DOI] [PubMed] [Google Scholar]
  15. Lovinger G. G., Klein R. A., Gilden R. V., Hatanaka M. The effect of cordycepin on cell transformation by RNA tumor viruses. Virology. 1973 Oct;55(2):524–526. doi: 10.1016/0042-6822(73)90195-5. [DOI] [PubMed] [Google Scholar]
  16. Mason W. S., Friis R. R., Linial M., Vogt P. K. Determination of the defective function in two mutants of Rous sarcoma virus. Virology. 1974 Oct;61(2):559–574. doi: 10.1016/0042-6822(74)90290-6. [DOI] [PubMed] [Google Scholar]
  17. Nass M. M. Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells. Exp Cell Res. 1972 May;72(1):211–222. doi: 10.1016/0014-4827(72)90583-6. [DOI] [PubMed] [Google Scholar]
  18. Perlman P. S., Mahler H. R. Molecular consequences of ethidium bromide mutagenesis. Nat New Biol. 1971 May 5;231(18):12–16. [PubMed] [Google Scholar]
  19. Roa R. C., Bose S. K. Inhibition by ethidium bromide of the establishment of infection by murine sarcoma virus. J Gen Virol. 1974 Nov;25(2):197–205. doi: 10.1099/0022-1317-25-2-197. [DOI] [PubMed] [Google Scholar]
  20. Slonimski P. P., Perrodin G., Croft J. H. Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal "petites". Biochem Biophys Res Commun. 1968 Feb 15;30(3):232–239. doi: 10.1016/0006-291x(68)90440-3. [DOI] [PubMed] [Google Scholar]
  21. Smith C. A., Jordan J. M., Vinograd J. In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture. J Mol Biol. 1971 Jul 28;59(2):255–272. doi: 10.1016/0022-2836(71)90050-7. [DOI] [PubMed] [Google Scholar]
  22. Takano T., Hatanaka M. Fate of viral RNA of murine leukemia virus after infection. Proc Natl Acad Sci U S A. 1975 Jan;72(1):343–347. doi: 10.1073/pnas.72.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Varmus H. E., Guntaka R. V., Deng C. T., Bishop J. M. Synthesis, structure and function of avian sarcoma virus-specific DNA in permissive and nonpermissive cells. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 2):987–996. doi: 10.1101/sqb.1974.039.01.113. [DOI] [PubMed] [Google Scholar]
  24. Zlotnick B. J., Bose S. K., Roa R. C. Deoxyglucose transport changes in murine sarcoma virus-infected cells-a quantitative assay for virus transforming activity. J Gen Virol. 1974 Aug;24(2):365–368. doi: 10.1099/0022-1317-24-2-365. [DOI] [PubMed] [Google Scholar]
  25. Zylber E., Vesco C., Penman S. Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J Mol Biol. 1969 Aug 28;44(1):195–204. doi: 10.1016/0022-2836(69)90414-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES