Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4381–4384. doi: 10.1073/pnas.72.11.4381

In vitro synthesis of a constitutive enzyme of Escherichia coli, 6-phosphogluconate dehydrogenase.

T Isturiz, R E Wolf Jr
PMCID: PMC388725  PMID: 172907

Abstract

Enzymes of central intermediary metabolism are among the constitutive proteins of Escherichia coli. 6-Phosphogluconate dehydrogenase [6-phospho-D-gluconate: nicotinamide adenine dinucleotide phosphate 2-oxidoreductase (decarboxylating), EC 1.1.1.44-A1, an enzyme of the hexose monophosphate shunt, was synthesized in vitro in a coupled transcription-translation system directed by DNA from a specialized transducing phage carrying gnd, the structural gene. Enzyme synthesized in vitro was detected by radiochemical assay of its activity. Kinetic experiments using inhibitors of transcription and translation suggest that synthesis of the mRNA for the enzyme was initiated at the gnd promoter. Neither cyclic AMP nor cyclic GMP had any effect on the amount of enzyme synthesized in vitro.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin S., McGeoch D. The synthesis in vitro of RNA polymerase subunits of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2420–2423. doi: 10.1073/pnas.70.8.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernlohr R. W., Haddox M. K., Goldberg N. D. Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. J Biol Chem. 1974 Jul 10;249(13):4329–4331. [PubMed] [Google Scholar]
  3. Brown A. T., Wittenberger C. L. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J Bacteriol. 1972 Jan;109(1):106–115. doi: 10.1128/jb.109.1.106-115.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraenkel D. G. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol. 1968 Apr;95(4):1267–1271. doi: 10.1128/jb.95.4.1267-1271.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jaskunas S. R., Lindahl L., Nomura M. Specialized transducing phages for ribosomal protein genes of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jan;72(1):6–10. doi: 10.1073/pnas.72.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaltschmidt E., Kahan L., Nomura M. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA. Proc Natl Acad Sci U S A. 1974 Feb;71(2):446–450. doi: 10.1073/pnas.71.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kirschbaum J. B. Regulation of subunit synthesis of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2651–2655. doi: 10.1073/pnas.70.9.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee Y. N., Lessie T. G. Purification and characterization of the two 6-phosphogluconate dehydrogenase species from Pseudomonas multivorans. J Bacteriol. 1974 Dec;120(3):1043–1057. doi: 10.1128/jb.120.3.1043-1057.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lew K. K., Roth J. R. Genetic approaches to determination of enzyme quaternary structure. Biochemistry. 1971 Jan 19;10(2):204–207. doi: 10.1021/bi00778a002. [DOI] [PubMed] [Google Scholar]
  10. Pouwels P. H., Van Rotterdam J. In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1786–1790. doi: 10.1073/pnas.69.7.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
  12. Scott W. A., Abramsky T. Neurospora 6-phosphogluconate dehydrogenase. I. Purification and characterization of the wild type enzyme. J Biol Chem. 1973 May 25;248(10):3535–3541. [PubMed] [Google Scholar]
  13. Urm E., Yang H., Zubay G., Kelker N., Maas W. In vitro repression of n- -acetyl-L-ornithinase synthesis in Escherichia coli. Mol Gen Genet. 1973;121(1):1–7. doi: 10.1007/BF00353688. [DOI] [PubMed] [Google Scholar]
  14. Wetekam W., Staack K., Ehring R. DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli. Mol Gen Genet. 1971;112(1):14–27. doi: 10.1007/BF00266928. [DOI] [PubMed] [Google Scholar]
  15. Wilcox G., Meuris P., Bass R., Englesberg E. Regulation of the L-arabinose operon BAD in vitro. J Biol Chem. 1974 May 10;249(9):2946–2952. [PubMed] [Google Scholar]
  16. Wolf R. E., Jr, Fraenkel D. G. Isolation of specialized transducing bacteriophages for gluconate 6-phosphate dehydrogenase (gnd) of Escherichia coli. J Bacteriol. 1974 Feb;117(2):468–476. doi: 10.1128/jb.117.2.468-476.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zalkin H., Yanofsky C., Squires C. L. Regulated in vitro synthesis of Escherichia coli tryptophan operon messenger ribonucleic acid and enzymes. J Biol Chem. 1974 Jan 25;249(2):465–475. [PubMed] [Google Scholar]
  18. Zubay G., Chambers D. A. A DNA-directed cell-free system for beta-galactosidase synthesis; characterization of the de novo synthesized enzyme and some aspects of the regulation of synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:753–761. doi: 10.1101/sqb.1969.034.01.085. [DOI] [PubMed] [Google Scholar]
  19. Zubay G. In vitro synthesis of protein in microbial systems. Annu Rev Genet. 1973;7:267–287. doi: 10.1146/annurev.ge.07.120173.001411. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES