Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4430–4434. doi: 10.1073/pnas.72.11.4430

Local anesthetics affect transmembrane cytoskeletal control of mobility and distribution of cell surface receptors.

G Poste, D Papahadjopoulos, G L Nicolson
PMCID: PMC388735  PMID: 1060123

Abstract

Tertiary amine local anesthetics facilitated concanavalin A-induced redistribution of lectin receptors on murine BALB/3T3 cells and enhanced the susceptibility of these cells to agglutination by concanavalin A. In contrast, these drugs at similar concentrations inhibited ligand-induced capping of immunoglobulin receptors on mouse lymphocytes. We propose that these differing effects of local anesthetics on membrane receptor mobility in fibroblasts and lymphocytes result from the action of anesthetics on membrane-associated microtubules and microfilaments involved in the transmembrane control of receptor mobility. We present electron microscopic evidence of structural alterations in microtubule and microfilament organization in anesthetic-treated cells, together with data on changes in the responsiveness of anesthetic-treated cells to drugs that act on microtubules and/or microfilaments. This evidence supports the proposal that anesthetics affect the organization of cytoskeletal components or their plasma membrane attachment points. The effects of local anesthetics on ligand-induced redistribution of membrane receptors in both 3T3 cells and lymphocytes can be duplicated by treating cells with colchicine (or Vinca alkaloids) together with cytochalasin B. We propose that the participation of membrane-associated microtubules and microfilaments in the transmembrane control of receptor mobility is such that microtubules and microfilaments play opposing roles in regulating the mobility and topography of cell surface receptors.

Full text

PDF
4430

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlin R. D., Oliver J. M., Ukena T. E., Yin H. H. Control of cell surface topography. Nature. 1974 Jan 4;247(5435):45–46. doi: 10.1038/247045a0. [DOI] [PubMed] [Google Scholar]
  2. Butcher F. R., Perdue J. F. Cytochalasin B: effect on hormone-mediated responses in cultured cells. J Cell Biol. 1973 Mar;56(3):857–861. doi: 10.1083/jcb.56.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byers M. R., Fink B. R., Kennedy R. D., Middaugh M. E., Hendrickson A. E. Effects of lidocaine on axonal morphology, microtubules, and rapid transport in rabbit vagus nerve in vitro. J Neurobiol. 1973;4(2):125–143. doi: 10.1002/neu.480040205. [DOI] [PubMed] [Google Scholar]
  4. De Petris S. Inhibition and reversal of capping by cytochalasin B, vinblastine and colchicine. Nature. 1974 Jul 5;250(461):54–56. doi: 10.1038/250054a0. [DOI] [PubMed] [Google Scholar]
  5. Durham A. C. A unified theory of the control of actin and myosin in nonmuscle movements. Cell. 1974 Jul;2(3):123–135. doi: 10.1016/0092-8674(74)90087-7. [DOI] [PubMed] [Google Scholar]
  6. Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gail M. H., Boone C. W. Procaine inhibition of fibroblast motility and proliferation. Exp Cell Res. 1972 Jul;73(1):252–255. doi: 10.1016/0014-4827(72)90130-9. [DOI] [PubMed] [Google Scholar]
  8. Godman G. C., Miranda A. F., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface. J Cell Biol. 1975 Mar;64(3):644–667. doi: 10.1083/jcb.64.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haschke R. H., Byers M. R., Fink B. R. Effects of lidocaine on rabbit brain microtubular protein. J Neurochem. 1974 May;22(5):837–843. doi: 10.1111/j.1471-4159.1974.tb04302.x. [DOI] [PubMed] [Google Scholar]
  10. Hubbell W. L., McConnell H. M. Spin-label studies of the excitable membranes of nerve and muscle. Proc Natl Acad Sci U S A. 1968 Sep;61(1):12–16. doi: 10.1073/pnas.61.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ji T. H., Nicolson G. L. Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2212–2216. doi: 10.1073/pnas.71.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirschner M. W., Williams R. C. The mechanism of microtubule assembly in vitro. J Supramol Struct. 1974;2(2-4):412–428. doi: 10.1002/jss.400020229. [DOI] [PubMed] [Google Scholar]
  13. Loor F., Forni L., Pernis B. The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Eur J Immunol. 1972 Jun;2(3):203–212. doi: 10.1002/eji.1830020304. [DOI] [PubMed] [Google Scholar]
  14. Nicolson G. L. Concanavalin A as a quantitative and ultrastructural probe for normal and neoplastic cell surfaces. Adv Exp Med Biol. 1975;55:153–172. doi: 10.1007/978-1-4684-0949-9_8. [DOI] [PubMed] [Google Scholar]
  15. Nicolson G. L. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes. J Natl Cancer Inst. 1973 Jun;50(6):1443–1451. doi: 10.1093/jnci/50.6.1443. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
  18. Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
  19. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  20. Papahadjopoulos D., Jacobson K., Poste G., Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta. 1975 Jul 18;394(4):504–519. doi: 10.1016/0005-2736(75)90137-6. [DOI] [PubMed] [Google Scholar]
  21. Papahadjopoulos D. Studies on the mechanism of action of local anesthetics with phospholipid model membranes. Biochim Biophys Acta. 1972 Apr 18;265(2):169–186. doi: 10.1016/0304-4157(72)90001-9. [DOI] [PubMed] [Google Scholar]
  22. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  23. Poste G. Changes in susceptibility of normal cells to agglutination by plant lectins following modification of cell coat material. Exp Cell Res. 1972 Aug;73(2):319–328. doi: 10.1016/0014-4827(72)90054-7. [DOI] [PubMed] [Google Scholar]
  24. Poste G., Papahadjopoulos D., Jacobson K., Vail W. J. Effects of local anesthetics on membrane properties. II. Enhancement of the susceptibility of mammalian cells to agglutination by plant lectins. Biochim Biophys Acta. 1975 Jul 18;394(4):520–539. doi: 10.1016/0005-2736(75)90138-8. [DOI] [PubMed] [Google Scholar]
  25. Poste G., Papahadjopoulos D., Jacobson K., Vail W. J. Local anaesthetics increase susceptibility of untransformed cells to agglutination by concanavalin A. Nature. 1975 Feb 13;253(5492):552–554. doi: 10.1038/253552a0. [DOI] [PubMed] [Google Scholar]
  26. Poste G., Reeve P. Increased mobility and redistribution of concanavalin A receptors on cells infected with Newcastle disease virus. Nature. 1974 Feb 15;247(5441):469–471. doi: 10.1038/247469a0. [DOI] [PubMed] [Google Scholar]
  27. Rabinovitch M., Destefano M. J. Macrophage spreading in vitro. III. The effect of metabolic inhibitors, anesthetics and other drugs on spreading induced by subtilisin. Exp Cell Res. 1974 Sep;88(1):153–162. doi: 10.1016/0014-4827(74)90629-6. [DOI] [PubMed] [Google Scholar]
  28. Ryan G. B., Borysenko J. Z., Karnovsky M. J. Factors affecting the redistribution of surface-bound concanavalin A on human polymorphonuclear leukocytes. J Cell Biol. 1974 Aug;62(2):351–365. doi: 10.1083/jcb.62.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ryan G. B., Unanue E. R., Karnovsky M. J. Inhibition of surface capping of macromolecules by local anaesthetics and tranquillisers. Nature. 1974 Jul 5;250(461):56–57. doi: 10.1038/250056a0. [DOI] [PubMed] [Google Scholar]
  30. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  31. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Unanue E. R., Karnovsky M. J. Ligand-induced movement of lymphocyte membrane macromolecules. V. Capping, cell movement, and microtubular function in normal and lectin-treated lymphocytes. J Exp Med. 1974 Nov 1;140(5):1207–1220. doi: 10.1084/jem.140.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
  34. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  35. Wilson L., Bryan J., Ruby A., Mazia D. Precipitation of proteins by vinblastine and calcium ions. Proc Natl Acad Sci U S A. 1970 Jul;66(3):807–814. doi: 10.1073/pnas.66.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]
  37. Yahara I., Edelman G. M. Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp Cell Res. 1975 Mar 1;91(1):125–142. doi: 10.1016/0014-4827(75)90150-0. [DOI] [PubMed] [Google Scholar]
  38. Yahara I., Edelman G. M. Modulation of lymphocyte receptor redistribution by concanavalin A, anti-mitotic agents and alterations of pH. Nature. 1973 Nov 16;246(5429):152–155. doi: 10.1038/246152a0. [DOI] [PubMed] [Google Scholar]
  39. de Petris S. Concanavalin A receptors, immunoglobulins, and theta antigen of the lymphocyte surface. Interactions with concanavalin A and with Cytoplasmic structures. J Cell Biol. 1975 Apr;65(1):123–146. doi: 10.1083/jcb.65.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES