Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Dec;72(12):4754–4758. doi: 10.1073/pnas.72.12.4754

Promoter-dependent transcription of tRNAITyr genes using DNA fragments produced by restriction enzymes.

H Küpper, R Contreras, A Landy, H G Khorana
PMCID: PMC388809  PMID: 1107999

Abstract

Two DNA fragments prepared from the transducing bacteriophage strains ø80psuIII+ and ø80hpsuIII+,- by digestion with restriction enzymes contain one tyrosine tRNA gene (suIII+) and two tyrosine tRNA genes (suIII+, su-) in tandem, respectively, a single promoter in both cases, and some additional DNA regions at the two ends of both. Using these fragments, we have studied characteristics of the promoter-dependent transcription of the tyrosine tRNA genes. The promoter-dependent transcripts were shown to correspond to the expected tRNA precursors. Exposure of the transcript from the single gene fragment to an S100 extract from Escherichia coli gave, via intermediates, 4S material which was active in enzymatically accepting tyrosine and contained some modified bases.

Full text

PDF
4754

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S., Smith J. D. Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol. 1971 Sep 8;233(36):35–39. doi: 10.1038/newbio233035a0. [DOI] [PubMed] [Google Scholar]
  2. Anthony D. D., Goldthwait D. A., Wu C. W. Studies with the ribonucleic acid polymerase. II. Kinetic aspects of initiation and polymerization. Biochemistry. 1969 Jan;8(1):246–256. doi: 10.1021/bi00829a035. [DOI] [PubMed] [Google Scholar]
  3. Beckmann J. S., Daniel V. Transcriptional control of in vitro tRNA-Tyr synthesis. Biochemistry. 1974 Sep 10;13(19):4058–4062. doi: 10.1021/bi00716a038. [DOI] [PubMed] [Google Scholar]
  4. Bikoff E. K., LaRue B. F., Gefter M. L. In vitro synthesis of transfer RNA. II. Identification of required enzymatic activities. J Biol Chem. 1975 Aug 25;250(16):6248–6255. [PubMed] [Google Scholar]
  5. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  6. Chamberlin M. J. The selectivity of transcription. Annu Rev Biochem. 1974;43(0):721–775. doi: 10.1146/annurev.bi.43.070174.003445. [DOI] [PubMed] [Google Scholar]
  7. Downey K. M., Jurmark B. S., So A. G. Determination of nucleotide sequences at promoter regions by the use of dinucleotides. Biochemistry. 1971 Dec 21;10(26):4970–4975. doi: 10.1021/bi00802a021. [DOI] [PubMed] [Google Scholar]
  8. Fuchse, Millette R. L., Zillig W., Walter G. Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli. Eur J Biochem. 1967 Dec;3(2):183–193. doi: 10.1111/j.1432-1033.1967.tb19514.x. [DOI] [PubMed] [Google Scholar]
  9. Ghysen A., Celis J. E. Joint transcription of two tRNA1Tyr genes from Escherichia coli. Nature. 1974 May 31;249(456):418–421. doi: 10.1038/249418a0. [DOI] [PubMed] [Google Scholar]
  10. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikeda H. In vitro synthesis of tRNA Tyr precursors and their conversion to 4S RNA. Nat New Biol. 1971 Sep 15;234(50):198–201. doi: 10.1038/newbio234198a0. [DOI] [PubMed] [Google Scholar]
  12. Landy A., Foeller C., Ross W. DNA fragments carrying genes for tRNATyrI. Nature. 1974 Jun 21;249(459):738–742. doi: 10.1038/249738a0. [DOI] [PubMed] [Google Scholar]
  13. Landy A., Ruedisueli E., Robinson L., Foeller C., Ross W. Digestion of deoxyribonucleic acids from bacteriophage T7, lambda, and phi 80h with site-specific nucleases from Hemophilus influenzae strain Rc and strain Rd. Biochemistry. 1974 May 7;13(10):2134–2142. doi: 10.1021/bi00707a022. [DOI] [PubMed] [Google Scholar]
  14. Loewen P. C., Sekiya T., Khorana H. G. The nucleotide sequence adjoining the CCA end of an Escherichia coli tyrosine transfer ribonucleic acid gene. J Biol Chem. 1974 Jan 10;249(1):217–226. [PubMed] [Google Scholar]
  15. Nakanishi S., Adhya S., Gottesman M., Pastan I. Activation of transcription at specific promoters by glycerol. J Biol Chem. 1974 Jul 10;249(13):4050–4056. [PubMed] [Google Scholar]
  16. Nierlich D. P., Lamfrom H., Sarabhai A., Abelson J. Transfer RNA synthesis in vitro. Proc Natl Acad Sci U S A. 1973 Jan;70(1):179–182. doi: 10.1073/pnas.70.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pribnow D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975 Mar;72(3):784–788. doi: 10.1073/pnas.72.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  19. Robertson H. D., Altman S., Smith J. D. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem. 1972 Aug 25;247(16):5243–5251. [PubMed] [Google Scholar]
  20. Russell R. L., Abelson J. N., Landy A., Gefter M. L., Brenner S., Smith J. D. Duplicate genes for tyrosine transfer RNA in Escherichia coli. J Mol Biol. 1970 Jan 14;47(1):1–13. doi: 10.1016/0022-2836(70)90397-9. [DOI] [PubMed] [Google Scholar]
  21. Saucier J. M., Wang J. C. Angular alteration of the DNA helix by E. coli RNA polymerase. Nat New Biol. 1972 Oct 11;239(93):167–170. doi: 10.1038/newbio239167a0. [DOI] [PubMed] [Google Scholar]
  22. Sekiya T., Khorana H. G. Nucleotide sequence in the promoter region of the Escherichia coli tyrosine tRNA gene. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2978–2982. doi: 10.1073/pnas.71.8.2978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sippel A. E., Hartmann G. R. Rifampicin resistance of RNA polymerase in the binary complex with DNA. Eur J Biochem. 1970 Sep;16(1):152–157. doi: 10.1111/j.1432-1033.1970.tb01066.x. [DOI] [PubMed] [Google Scholar]
  24. Smith J. D. Genetic and structural analysis of transfer RNA. Br Med Bull. 1973 Sep;29(3):220–225. doi: 10.1093/oxfordjournals.bmb.a071011. [DOI] [PubMed] [Google Scholar]
  25. Travers A. On the nature of DNA promoter conformations. The effects of glycerol and dimethylsulphoxide. Eur J Biochem. 1974 Sep 16;47(3):435–441. doi: 10.1111/j.1432-1033.1974.tb03710.x. [DOI] [PubMed] [Google Scholar]
  26. Travers A. RNA polymerase--promoter interactions: some general principles. Cell. 1974 Oct;3(2):97–104. doi: 10.1016/0092-8674(74)90112-3. [DOI] [PubMed] [Google Scholar]
  27. Walter G., Zillig W., Palm P., Fuchs E. Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase. Eur J Biochem. 1967 Dec;3(2):194–201. doi: 10.1111/j.1432-1033.1967.tb19515.x. [DOI] [PubMed] [Google Scholar]
  28. Zubay G., Cheong L., Gefter M. DNA-directed cell-free synthesis of biologically active transfer RNA: su + 3 tyrosyl-tRNA. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2195–2197. doi: 10.1073/pnas.68.9.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES