Skip to main content
Biometrika logoLink to Biometrika
. 2012 Jan 13;99(1):223–229. doi: 10.1093/biomet/asr075

Proportional likelihood ratio models for mean regression

Alan Huang 1, Paul J Rathouz 2
PMCID: PMC3888642  NIHMSID: NIHMS377203  PMID: 24421412

Abstract

The proportional likelihood ratio model introduced in Luo & Tsai (2012) is adapted to explicitly model the means of observations. This is useful for the estimation of and inference on treatment effects, particularly in designed experiments and allows the data analyst greater control over model specification and parameter interpretation.

Keywords: Empirical likelihood, Exponential tilting, Generalized linear model, Multi-way layout, Proportional likelihood ratio model, Quasilikelihood, Semiparametric model

References

  1. Box G. E. P., Cox D. R. An analysis of transformations (with discussion) J. R. Statist. Soc. B. 1964;26:211–52. [Google Scholar]
  2. DiCiccio T. J., Hall P., Romano J. Empirical likelihood is Bartlett-correctable. Ann. Statist. 1991;19:1053–61. [Google Scholar]
  3. Fokianos K., Kedem B., Qin J., Short D. A. A semiparametric approach to the one-way layout. Technometrics. 2001;43:56–65. [Google Scholar]
  4. Fourer R., Gay D. M., Kernighan B. W. AMPL: A Modeling Language for Mathematical Programming. 2nd ed. Pacific Grove: Cengage Learning; 2003. [Google Scholar]
  5. Kolaczyk E. D. Empirical likelihood and generalized linear models. Statist. Sinica. 1994;4:199–218. [Google Scholar]
  6. Luo X., Tsai W. Y. Proportional likelihood ratio model. Biometrika. 2012 to appear. [Google Scholar]
  7. Myers R. H., Montgomery D. C., Vining G. G., Robinson T. J. Generalized Linear Models: With Applications in Engineering and the Sciences. 2nd ed. New York: Wiley; 2010. [Google Scholar]
  8. Owen A. B. Empirical Likelihood. Boca Raton: Chapman and Hall; 2001. [Google Scholar]
  9. Qin J., Lawless J. Empirical likelihood and general estimating equations. Ann. Statist. 1994;22:300–25. [Google Scholar]
  10. Rathouz P. J., Gao L. P. Generalized linear models with unspecified reference distribution. Biostatistics. 2009;10:205–18. doi: 10.1093/biostatistics/kxn030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vardi Y. Empirical distributions in selection bias models. Ann. Statist. 1985;13:178–203. [Google Scholar]

Articles from Biometrika are provided here courtesy of Oxford University Press

RESOURCES