Abstract
Polymorphonuclear leukocytes isolated from chicken peritoneal exudates have been found to catalyze cyanide-insensitive stimulation of respiration and the hexose monophosphate shunt upon exposure to heat-inactivated Staphylococcus aureus. However, there was no demonstrable formate oxidation concomitant with phagocytosis in either the presence or absence of exogenous catalase. Moreover, chicken polymorphonuclear leukocytes failed to oxidize scopoletin concomitant with phagocytosis in the presence of horseradish peroxidase. While oxygen uptake was increased 2- to 3-fold by the stimulus of phagocytosis, the oxidation of [1-(14)C]glucose was increased approximately 20-fold. The cells contain two mechanisms, a glutathione reductase-glutathione peroxidase system and an NADPH-NAD+ transhydrogenase, each of which is present in sufficient capacity to accommodate the enhanced shunt activity. Although chicken polymorphonuclear leukocytes were found to possess a substantial capacity to catalyze the cyanide-insensitive oxidation of either NADH or NADPH, the total or specific activities of such processes were not demonstrably affected by phagocytosis.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baehner R. L., Gilman N., Karnovsky M. L. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J Clin Invest. 1970 Apr;49(4):692–700. doi: 10.1172/JCI106281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baehner R. L., Johnston R. B., Jr, Nathan D. G. Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease. J Reticuloendothel Soc. 1972 Aug;12(2):150–169. [PubMed] [Google Scholar]
- Baehner R. L., Karnovsky M. L. Deficiency of reduced nicotinamide-adenine dinucleotide oxidase in chronic granulomatous disease. Science. 1968 Dec 13;162(3859):1277–1279. doi: 10.1126/science.162.3859.1277. [DOI] [PubMed] [Google Scholar]
- Baehner R. L., Neiburger R. G., Johnson D. E., Murrmann S. M. Transient bactericidal defect of peripheral blood phagocytes from children with acute lymphoblastic leukemia receiving craniospinal irradiation. N Engl J Med. 1973 Dec 6;289(23):1209–1213. doi: 10.1056/NEJM197312062892301. [DOI] [PubMed] [Google Scholar]
- Bellanti J. A., Cantz B. E., Schlegel R. J. Accelerated decay of glucose 6-phosphate dehydrogenase activity in chronic granulomatous disease. Pediatr Res. 1970 Sep;4(5):405–411. doi: 10.1203/00006450-197009000-00003. [DOI] [PubMed] [Google Scholar]
- Brune K., Leffell M. S., Spitznagel J. K. Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infect Immun. 1972 Mar;5(3):283–287. doi: 10.1128/iai.5.3.283-287.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brune K., Spitznagel J. K. Peroxidaseless chicken leukocytes: isolation and characterization of antibacterial granules. J Infect Dis. 1973 Jan;127(1):84–94. doi: 10.1093/infdis/127.1.84. [DOI] [PubMed] [Google Scholar]
- Davidson W. D., Tanaka K. R. Instantaneous and continuous measurement of phagocytosis-stimulated glucose oxidation in human granulocytes by an ionization chamber method. Br J Haematol. 1973 Dec;25(6):783–792. doi: 10.1111/j.1365-2141.1973.tb01790.x. [DOI] [PubMed] [Google Scholar]
- Evans A. E., Kaplan N. O. Pyridine nucleotide transhydrogenase in normal human and leukemic leukocytes. J Clin Invest. 1966 Aug;45(8):1268–1272. doi: 10.1172/JCI105433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindenburg A., Spitznagel J., Arnheim N. Isozymes of lysozyme in leukocytes and egg white: evidence for the species-specific control of egg-white lysozyme synthesis. Proc Natl Acad Sci U S A. 1974 May;71(5):1653–1657. doi: 10.1073/pnas.71.5.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J., Pincus S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 1971 Oct;50(10):2226–2229. doi: 10.1172/JCI106718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer R. I., Cline M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488. doi: 10.1172/JCI106114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandell G. L. Influence of type of ingested particle on human leukocyte metabolism. Proc Soc Exp Biol Med. 1971 Sep;137(4):1228–1230. doi: 10.3181/00379727-137-35761. [DOI] [PubMed] [Google Scholar]
- Mandell G. L., Sullivan G. W. Pyridine nucleotide oxidation by intact human polymorphonuclear neutrophils. Biochim Biophys Acta. 1971 Apr 6;234(1):43–45. doi: 10.1016/0005-2728(71)90127-7. [DOI] [PubMed] [Google Scholar]
- Noseworthy J., Jr, Karnovsky M. L. Role of peroxide in the stimulation of the hexose monophosphate shunt during phagocytosis by polymorphonuclear leukocytes. Enzyme. 1972;13(1):110–131. doi: 10.1159/000459652. [DOI] [PubMed] [Google Scholar]
- PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
- Qualliotine D., DeChatelet L. R., McCall C. E., Cooper M. R. Stimulation of oxidative metabolism in polymorphonuclear leukocytes by catecholamines. J Reticuloendothel Soc. 1972 Mar;11(3):263–276. [PubMed] [Google Scholar]
- Undritz E. Die Alius-Grignaschi-Anomalie: Der erblich-konstitutionelle Peroxydasedefekt der Neutrophilen und Monozyten. Blut. 1966 Dec;14(3):129–136. doi: 10.1007/BF01631534. [DOI] [PubMed] [Google Scholar]
- Vogt M. T., Thomas C., Vassallo C. L., Basford R. E., Gee J. B. Glutathione-dependent peroxidative metabolism in the alveolar macrophage. J Clin Invest. 1971 Feb;50(2):401–410. doi: 10.1172/JCI106507. [DOI] [PMC free article] [PubMed] [Google Scholar]