Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Feb;68(2):263–264. doi: 10.1073/pnas.68.2.263

Synthetic Derivatives of Polyethyleneimine with Enzyme-Like Catalytic Activity (Synzymes)

Irving M Klotz 1, Garfield P Royer 1,*, Ioannis S Scarpa 1
PMCID: PMC388912  PMID: 16591900

Abstract

A synthetic polymer has been prepared which contains dodecyl groups (to bind small substrate molecules) and methyleneimidazole side chains (as nucleophilic catalytic sites) linked to a polyethyleneimine framework. This macromolecule, with a high local concentration of binding and catalytic groups, catalyzes the hydrolysis of uncharged nitrophenyl esters in water at pH 7 with rates markedly greater than previously observed with any other synthetic substances under similar conditions.

Full text

PDF
263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender M. L., Kézdy F. J., Wedler F. C. Alpha-chymotrypsin: enzyme concentration and kinetics. J Chem Educ. 1967 Feb;44(2):84–88. doi: 10.1021/ed044p84. [DOI] [PubMed] [Google Scholar]
  2. HORINISHI H., HACHIMORI Y., KURIHARA K., SHIBATA K. STATES OF AMINO ACID RESIDUES IN PROTEINS. 3. HISTIDINE RESIDUES IN INSULIN, LYSOZYME, ALBUMIN AND PROTEINASES AS DETERMINED WITH A NEW REAGENT OF DIAZO-I-H-TETRAZOLE. Biochim Biophys Acta. 1964 Jun 8;86:477–489. [PubMed] [Google Scholar]
  3. JENCKS W. P., CARRIUOLO J. Imidazole catalysis. II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions. J Biol Chem. 1959 May;234(5):1272–1279. [PubMed] [Google Scholar]
  4. KEZDY F. J., BENDER M. L. The kinetics of the alpha-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry. 1962 Nov;1:1097–1106. doi: 10.1021/bi00912a021. [DOI] [PubMed] [Google Scholar]
  5. Klotz I. M., Royer G. P., Sloniewsky A. R. Macromolecule--small molecule interactions. Strong binding and cooperativity in a model synthetic polymer. Biochemistry. 1969 Dec;8(12):4752–4756. doi: 10.1021/bi00840a015. [DOI] [PubMed] [Google Scholar]
  6. Klotz I. M., Sloniewsky A. R. Macromolecule-small molecule interactions: a synthetic polymer with greater affinity than serum albumin for small molecules. Biochem Biophys Res Commun. 1968 May 10;31(3):421–426. doi: 10.1016/0006-291x(68)90493-2. [DOI] [PubMed] [Google Scholar]
  7. Klotz I. M., Stryker V. H. Macromolecule-small molecule interactions. A synthetic macromolecule with high esterolytic activity. J Am Chem Soc. 1968 May 8;90(10):2717–2719. doi: 10.1021/ja01012a060. [DOI] [PubMed] [Google Scholar]
  8. Sheehan J. C., Bennett G. B., Schneider J. A. Synthetic peptide models of enzyme active sites. 3. Stereoselective esterase models. J Am Chem Soc. 1966 Jul 20;88(14):3455–3456. doi: 10.1021/ja00966a065. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES