Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Feb;68(2):294–298. doi: 10.1073/pnas.68.2.294

Isolation of Saccharomyces cerevisiae Mitochondrial Formyltetrahydrofolic Acid:Methionyl-tRNA Transformylase and the Hybridization of Mitochondrial fMet-tRNA with Mitochondrial DNA

A Halbreich 1,2,3, M Rabinowitz 1,2,3
PMCID: PMC388921  PMID: 5277072

Abstract

Formyltetrahydrofolic acid:methionyl-tRNA transformylase was isolated from Saccharomyces cerevisiae mitochondria and used to prepare yeast mitochondrial [3H]formylmethionyl-tRNA. This fMet-tRNA hybridizes with mitochondrial DNA but not with yeast nuclear or E. coli DNA. Unlabeled mitochondrial, but not extramitochondrial, tRNA competes in this reaction. tRNA was eluted from the hybrid and found to contain the label almost exclusively in fMet-tRNA. Yeast cytoplasmic fMet-tRNA formylated with Escherichia coli enzyme, and E. coli fMet-tRNA, do not hybridize with mitochondrial DNA. It is concluded that yeast mitochondrial tRNAfMet is a gene product of the mitochondrial genome.

Full text

PDF
294

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avital S., Elson D. A convenient procedure for preparing transfer ribonucleic acid from Escherichia coli. Biochim Biophys Acta. 1969 Apr 22;179(2):297–307. doi: 10.1016/0005-2787(69)90038-0. [DOI] [PubMed] [Google Scholar]
  2. Bernardi G., Carnevali F., Nicolaieff A., Piperno G., Tecce G. Separation and characterization of a satellite DNA from a yeast cytoplasmic "petite" mutant. J Mol Biol. 1968 Nov 14;37(3):493–505. doi: 10.1016/0022-2836(68)90117-4. [DOI] [PubMed] [Google Scholar]
  3. Bhaduri S., Chatterjee N. K., Bose K. K., Gupta N. K. Initiation of protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1970 Jul 27;40(2):402–407. doi: 10.1016/0006-291x(70)91023-5. [DOI] [PubMed] [Google Scholar]
  4. Coen D., Deutsch J., Netter P., Petrochilo E., Slonimski P. P. Mitochondrial genetics. I. Methodology and phenomenology. Symp Soc Exp Biol. 1970;24:449–496. [PubMed] [Google Scholar]
  5. Fukuhara H. Informational role of mitochondrial DNA studied by hybridization with different classes of RNA in yeast. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1065–1072. doi: 10.1073/pnas.58.3.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  7. Kirby K. S. Isolation and fractionation of nucleic acids. Prog Nucleic Acid Res Mol Biol. 1964;3:1–31. doi: 10.1016/s0079-6603(08)60737-0. [DOI] [PubMed] [Google Scholar]
  8. MARCKER K., SANGER F. N-FORMYL-METHIONYL-S-RNA. J Mol Biol. 1964 Jun;8:835–840. doi: 10.1016/s0022-2836(64)80164-9. [DOI] [PubMed] [Google Scholar]
  9. Marcker K. The formation of N-formyl-methionyl-sRNA. J Mol Biol. 1965 Nov;14(1):63–70. doi: 10.1016/s0022-2836(65)80230-3. [DOI] [PubMed] [Google Scholar]
  10. Rabinowitz M., Getz G. S., Casey J., Swift H. Synthesis of mitochondrial and nuclear DNA in anerobically grown yeast during the development of mitochondrial function in response to oxygen. J Mol Biol. 1969 May 14;41(3):381–400. doi: 10.1016/0022-2836(69)90283-6. [DOI] [PubMed] [Google Scholar]
  11. Rabinowitz M., Swift H. Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. Physiol Rev. 1970 Jul;50(3):376–427. doi: 10.1152/physrev.1970.50.3.376. [DOI] [PubMed] [Google Scholar]
  12. RajBhandary U. L., Ghosh H. P. Studies on polynucleotides. XCI. Yeast methionine transfer ribonucleic acid: purification, properties, and terminal nucleotide sequences. J Biol Chem. 1969 Mar 10;244(5):1104–1113. [PubMed] [Google Scholar]
  13. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  14. Smith A. E., Marcker K. A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature. 1970 May 16;226(5246):607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  15. Smith A. E., Marcker K. A. N-formylmethionyl transfer RNA in mitochondria from yeast and rat liver. J Mol Biol. 1968 Dec 14;38(2):241–243. doi: 10.1016/0022-2836(68)90409-9. [DOI] [PubMed] [Google Scholar]
  16. Weiss S. B., Hsu W. T., Foft J. W., Scherberg N. H. Transfer RNA coded by the T4 bacteriophage genome. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114–121. doi: 10.1073/pnas.61.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wintersberger E. A distinct class of ribosomal RNA components in yeast mitochondria as revealed by gradient centrifugation and by DNA-RNA-hybridization. Hoppe Seylers Z Physiol Chem. 1967 Dec;348(12):1701–1704. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES