Abstract
The ability of renal cortical slices of newborn and young rats to accumulate a nonmetabolizable sugar, α-methylglucoside, is slight and does not reach adult capacity until 25 days of age. However, a rudimentary sugar transport system is present, as indicated by a further decrease in accumulation in the presence of phlorizin or absence of sodium ion.
Amino acid uptake in immature kidney tissue is not deficient; on the contrary, the tissue took up and concentrated more glycine and lysine than adult tissue. Decreased amino acid efflux from the immature cells appears to be the explanation. Concentration dependence of amino acid uptake was the same in 5-day-old and adult tissue.
These differences between the transport characteristics of a model sugar and representative amino acids during development indicate separate transport systems for the two types of substrate.
Full text
PDF![372](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4e/388940/7bc55daedd72/pnas00077-0126.png)
![373](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4e/388940/db2201983f4e/pnas00077-0127.png)
![374](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4e/388940/41cfa20fd60c/pnas00077-0128.png)
![375](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4e/388940/52c08c5e56c0/pnas00077-0129.png)
![376](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4e/388940/2ba6483caa25/pnas00077-0130.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarado F. Intestinal transport of sugars and amino acids: independence or federalism? Am J Clin Nutr. 1970 Jun;23(6):824–828. doi: 10.1093/ajcn/23.6.824. [DOI] [PubMed] [Google Scholar]
- Alvarado F. Transport of sugars and amino acids in the intestine: evidence for a common carrier. Science. 1966 Feb 25;151(3713):1010–1013. doi: 10.1126/science.151.3713.1010. [DOI] [PubMed] [Google Scholar]
- Anraku Y. The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli. J Biol Chem. 1967 Mar 10;242(5):793–800. [PubMed] [Google Scholar]
- Baerlocher K. E., Scriver C. R., Mohyuddin F. Ontogeny of iminoglycine transport in mammalian kidney. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1009–1016. doi: 10.1073/pnas.65.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey J. M., Fishman P. H., Pentchev P. G. Studies on mutarotases. VI. Enzyme levels and sugar reabsorption in developing rat kidney and intestine. J Biol Chem. 1970 Feb 10;245(3):559–563. [PubMed] [Google Scholar]
- Dent C. E. The amino-aciduria in Fanconi syndrome. A study making extensive use of techniques based on paper partition chromatography. Biochem J. 1947;41(2):240–253. doi: 10.1042/bj0410240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX M., THIER S., ROSENBERG L., SEGAL S. IMPAIRED RENAL TUBULAR FUNCTION INDUCED BY SUGAR INFUSION IN MAN. J Clin Endocrinol Metab. 1964 Dec;24:1318–1327. doi: 10.1210/jcem-24-12-1318. [DOI] [PubMed] [Google Scholar]
- FOX M., THIER S., ROSENBERG L., SEGAL S. IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS. Biochim Biophys Acta. 1964 Jan 27;79:167–176. doi: 10.1016/0926-6577(64)90049-x. [DOI] [PubMed] [Google Scholar]
- FROESCH E. R., WOLF H. P., BAITSCH H., PRADER A., LABHART A. Hereditary fructose intolerance. An inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am J Med. 1963 Feb;34:151–167. doi: 10.1016/0002-9343(63)90050-0. [DOI] [PubMed] [Google Scholar]
- HOLZEL A., KOMROWER G. M., WILSON V. K. Amino-aciduria in galactosaemia. Br Med J. 1952 Jan 26;1(4751):194–195. doi: 10.1136/bmj.1.4751.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinzeller A., Kolínská J., Benes I. Transport of monosaccharides in kidney-cortex cells. Biochem J. 1967 Sep;104(3):852–860. doi: 10.1042/bj1040852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohyuddin F., Scriver C. R. Amino acid transport in mammalian kidney: Multiple systems for imino acids and glycine in rat kidney. Am J Physiol. 1970 Jul;219(1):1–8. doi: 10.1152/ajplegacy.1970.219.1.1. [DOI] [PubMed] [Google Scholar]
- Penrose W. R., Nichoalds G. E., Piperno J. R., Oxender D. L. Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem. 1968 Nov 25;243(22):5921–5928. [PubMed] [Google Scholar]
- ROSENBERG L. E., BERMAN M., SEGAL S. Studies of the kinetics of amino acid transport, incorporation into portein and oxidation in kidney-cortex slices. Biochim Biophys Acta. 1963 Jun 4;71:664–675. doi: 10.1016/0006-3002(63)91140-5. [DOI] [PubMed] [Google Scholar]
- ROSENBERG L. E., BLAIR A., SEGAL S. Transport of amino acids by slices of rat-kidney cortex. Biochim Biophys Acta. 1961 Dec 23;54:479–488. doi: 10.1016/0006-3002(61)90088-9. [DOI] [PubMed] [Google Scholar]
- ROSENBERG L. E., WEINBERG A. N., SEGAL S. The effect of high galactose diets on urinary excretion of amino acids in the rat. Biochim Biophys Acta. 1961 Apr 15;48:500–505. doi: 10.1016/0006-3002(61)90047-6. [DOI] [PubMed] [Google Scholar]
- Reiser S., Christiansen P. A. Intestinal transport of amino acids as affected by sugars. Am J Physiol. 1969 Apr;216(4):915–924. doi: 10.1152/ajplegacy.1969.216.4.915. [DOI] [PubMed] [Google Scholar]
- SEGAL S., THIER S., FOX M., ROSENBERG L. Inhibitory effect of sugars on amino acid accumulation by slices of rat kidney cortex. Biochim Biophys Acta. 1962 Dec 17;65:567–568. doi: 10.1016/0006-3002(62)90478-x. [DOI] [PubMed] [Google Scholar]
- Saunders S. J., Isselbacher K. J. Inhibition of intestinal amino acid transport by hexoses. Biochim Biophys Acta. 1965 Jul 22;102(2):397–409. doi: 10.1016/0926-6585(65)90130-5. [DOI] [PubMed] [Google Scholar]
- Segal S., Crawhall J. C. Characteristics of cystine and cysteine transport in rat kidney cortex slices. Proc Natl Acad Sci U S A. 1968 Jan;59(1):231–237. doi: 10.1073/pnas.59.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal S., Genel M., Smith I. Effect of storage at 4 degree C. on alpha-methylglucoside transport by rat kidney cortex slices. J Lab Clin Med. 1968 Nov;72(5):778–785. [PubMed] [Google Scholar]
- Segal S., Schwartzman L., Blair A., Bertoli D. Dibasic amino acid transport in rat-kidney cortex slices. Biochim Biophys Acta. 1967 Feb 1;135(1):127–135. doi: 10.1016/0005-2736(67)90015-6. [DOI] [PubMed] [Google Scholar]
- Segal S., Smith I. Delineation of cystine and cysteine transport systems in rat kidney cortex by developmental patterns. Proc Natl Acad Sci U S A. 1969 Jul;63(3):926–933. doi: 10.1073/pnas.63.3.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I., Segal S. The influence of size of rat kidney cortex slices on the accumulation of amino acids. Biochim Biophys Acta. 1968 Sep 17;163(2):281–283. doi: 10.1016/0005-2736(68)90111-9. [DOI] [PubMed] [Google Scholar]
- THIER S., FOX M., ROSENBERG L., SEGAL S. HEXOSE INHIBITION OF AMINO ACID UPTAKE IN THE RAT-KIDNEY-CORTEX SLICE. Biochim Biophys Acta. 1964 Oct 9;93:106–115. doi: 10.1016/0304-4165(64)90265-x. [DOI] [PubMed] [Google Scholar]
- Webber W. A., Cairns J. A. A comparison of the amino acid concentrating ability of the kidney cortex of newborn and mature rats. Can J Physiol Pharmacol. 1968 Mar;46(2):165–169. doi: 10.1139/y68-027. [DOI] [PubMed] [Google Scholar]