Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 9;93(14):6847–6850. doi: 10.1073/pnas.93.14.6847

Chromosome manipulation: a systematic approach toward understanding human chromosome structure and function.

H F Willard 1
PMCID: PMC38895  PMID: 8692907

Full text

PDF
6847

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. R., Goldstein L. S. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1735–1742. doi: 10.1073/pnas.93.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown C. J., Willard H. F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature. 1994 Mar 10;368(6467):154–156. doi: 10.1038/368154a0. [DOI] [PubMed] [Google Scholar]
  3. Brown K. E., Barnett M. A., Burgtorf C., Shaw P., Buckle V. J., Brown W. R. Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet. 1994 Aug;3(8):1227–1237. doi: 10.1093/hmg/3.8.1227. [DOI] [PubMed] [Google Scholar]
  4. Brown W. R. Mammalian artificial chromosomes. Curr Opin Genet Dev. 1992 Jun;2(3):479–486. doi: 10.1016/s0959-437x(05)80161-3. [DOI] [PubMed] [Google Scholar]
  5. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  7. Clarke L. Centromeres of budding and fission yeasts. Trends Genet. 1990 May;6(5):150–154. doi: 10.1016/0168-9525(90)90149-z. [DOI] [PubMed] [Google Scholar]
  8. Farr C. J., Bayne R. A., Kipling D., Mills W., Critcher R., Cooke H. J. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J. 1995 Nov 1;14(21):5444–5454. doi: 10.1002/j.1460-2075.1995.tb00228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farr C. J., Stevanovic M., Thomson E. J., Goodfellow P. N., Cooke H. J. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet. 1992 Dec;2(4):275–282. doi: 10.1038/ng1292-275. [DOI] [PubMed] [Google Scholar]
  10. Farr C., Fantes J., Goodfellow P., Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7006–7010. doi: 10.1073/pnas.88.16.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haaf T., Warburton P. E., Willard H. F. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell. 1992 Aug 21;70(4):681–696. doi: 10.1016/0092-8674(92)90436-g. [DOI] [PubMed] [Google Scholar]
  12. Hadlaczky G., Praznovszky T., Cserpán I., Keresö J., Péterfy M., Kelemen I., Atalay E., Szeles A., Szelei J., Tubak V. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8106–8110. doi: 10.1073/pnas.88.18.8106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hahnenberger K. M., Baum M. P., Polizzi C. M., Carbon J., Clarke L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1989 Jan;86(2):577–581. doi: 10.1073/pnas.86.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanish J. P., Yanowitz J. L., de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8861–8865. doi: 10.1073/pnas.91.19.8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heller R., Brown K. E., Burgtorf C., Brown W. R. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7125–7130. doi: 10.1073/pnas.93.14.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huxley C. Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther. 1994 Jan;1(1):7–12. [PubMed] [Google Scholar]
  17. Itzhaki J. E., Barnett M. A., MacCarthy A. B., Buckle V. J., Brown W. R., Porter A. C. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet. 1992 Dec;2(4):283–287. doi: 10.1038/ng1292-283. [DOI] [PubMed] [Google Scholar]
  18. Larin Z., Fricker M. D., Tyler-Smith C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet. 1994 May;3(5):689–695. doi: 10.1093/hmg/3.5.689. [DOI] [PubMed] [Google Scholar]
  19. Murphy T. D., Karpen G. H. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell. 1995 Apr 7;81(1):139–148. doi: 10.1016/0092-8674(95)90378-x. [DOI] [PubMed] [Google Scholar]
  20. Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray A. W., Schultes N. P., Szostak J. W. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986 May 23;45(4):529–536. doi: 10.1016/0092-8674(86)90284-9. [DOI] [PubMed] [Google Scholar]
  22. Murray A. W., Szostak J. W. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1985;1:289–315. doi: 10.1146/annurev.cb.01.110185.001445. [DOI] [PubMed] [Google Scholar]
  23. Murray A. W., Szostak J. W. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. doi: 10.1038/305189a0. [DOI] [PubMed] [Google Scholar]
  24. Ohashi H., Wakui K., Ogawa K., Okano T., Niikawa N., Fukushima Y. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am J Hum Genet. 1994 Dec;55(6):1202–1208. [PMC free article] [PubMed] [Google Scholar]
  25. Pluta A. F., Mackay A. M., Ainsztein A. M., Goldberg I. G., Earnshaw W. C. The centromere: hub of chromosomal activities. Science. 1995 Dec 8;270(5242):1591–1594. doi: 10.1126/science.270.5242.1591. [DOI] [PubMed] [Google Scholar]
  26. Sullivan B. A., Schwartz S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet. 1995 Dec;4(12):2189–2197. doi: 10.1093/hmg/4.12.2189. [DOI] [PubMed] [Google Scholar]
  27. Tyler-Smith C., Willard H. F. Mammalian chromosome structure. Curr Opin Genet Dev. 1993 Jun;3(3):390–397. doi: 10.1016/0959-437x(93)90110-b. [DOI] [PubMed] [Google Scholar]
  28. Voullaire L. E., Slater H. R., Petrovic V., Choo K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet. 1993 Jun;52(6):1153–1163. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES