Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Feb;68(2):500–504. doi: 10.1073/pnas.68.2.500

Temperature-Sensitive Mutants of Bioluminescent Bacteria

Thomas Cline 1, J W Hastings 1
PMCID: PMC388969  PMID: 5277108

Abstract

Mutants of a marine luminous bacterium, in which the ability to emit light is conditional upon temperature, have been isolated. The mutants obtained fall into three classes, which are readily distinguishable by both in vivo and in vitro criteria. In one class an altered, more temperature-sensitive luciferase is produced; in a second, the luciferase is actually not produced at the higher temperature. The third is defective in the production of an aldehyde-like factor that is a known requirement in the in vitro reaction.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böck A. Relation between subunit structure and temperature-sensitivity of mutant phenylalanyl RNA synthetases of Escherichia coli. Eur J Biochem. 1968 Apr;4(3):395–400. doi: 10.1111/j.1432-1033.1968.tb00225.x. [DOI] [PubMed] [Google Scholar]
  2. Friedland J., Hastings J. W. Nonidentical subunits of bacterial luciferase: their isolation and recombination to form active enzyme. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2336–2342. doi: 10.1073/pnas.58.6.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HASTINGS J. W., GIBSON Q. H. Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem. 1963 Jul;238:2537–2554. [PubMed] [Google Scholar]
  4. Hastings J. W., Weber K., Friedland J., Eberhard A., Mitchell G. W., Gunsalus A. Structurally distinct bacterial luciferases. Biochemistry. 1969 Dec;8(12):4681–4689. doi: 10.1021/bi00840a004. [DOI] [PubMed] [Google Scholar]
  5. Meighen E. A., Smillie L. B., Hastings J. W. Subunit homologies in bacterial luciferases. Biochemistry. 1970 Dec 8;9(25):4949–4952. doi: 10.1021/bi00827a018. [DOI] [PubMed] [Google Scholar]
  6. Molholt B., de Groot B. Double conditional lethality: temperature-sensitive and amber mutations in the glucosyl transferase gene of bacteriophage T2. Eur J Biochem. 1969 Jun;9(2):222–228. doi: 10.1111/j.1432-1033.1969.tb00598.x. [DOI] [PubMed] [Google Scholar]
  7. Nealson K. H., Markovitz A. Mutant analysis and enzyme subunit complementation in bacterial bioluminescence in Photobacterium fischeri. J Bacteriol. 1970 Oct;104(1):300–312. doi: 10.1128/jb.104.1.300-312.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nealson K. H., Platt T., Hastings J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970 Oct;104(1):313–322. doi: 10.1128/jb.104.1.313-322.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oshima Y., Tomizawa J. I., Horiuchi T. Isolation of temperature-sensitive Lac repressors. J Mol Biol. 1968 May 28;34(1):195–198. doi: 10.1016/0022-2836(68)90246-5. [DOI] [PubMed] [Google Scholar]
  10. Rogers P., McElroy W. D. BIOCHEMICAL CHARACTERISTICS OF ALDEHYDE AND LUCIFERASE MUTANTS OF LUMINOUS BACTERIA. Proc Natl Acad Sci U S A. 1955 Feb 15;41(2):67–70. doi: 10.1073/pnas.41.2.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yaniv M., Gros F. Studies on valyl-tRNA synthetase and tRNA from Escherichia coli. 3. Valyl-tRNA synthetases from thermosensitive mutants of Escherichia coli. J Mol Biol. 1969 Aug 28;44(1):31–45. doi: 10.1016/0022-2836(69)90403-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES