Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Feb;68(2):505–508. doi: 10.1073/pnas.68.2.505

Asynchronous Synthesis of the Complementary Strands of the Reovirus Genome

Michael Schonberg *, Samuel C Silverstein *, Daniel H Levin *, George Acs *
PMCID: PMC388970  PMID: 5277109

Abstract

The mechanism of replication of the double-stranded RNA genome of reovirus has been analyzed by tracing the fate of the parental double-stranded RNA genome and by determining whether the complementary strands, which comprise the progeny double-stranded RNA, are synthesized simultaneously or sequentially. The results indicate that the parental double-stranded RNA is conserved as the original duplex molecule within a subviral particle throughout the viral replicative cycle. The complementary strands, which form the progeny double-stranded RNA, are produced asynchronously. Minus strands are synthesized on preformed plus-strand templates, whereas plus strands appear to be synthesized on double-stranded RNA templates.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A. K., Shatkin A. J. Transcription in vitro by reovirus-associated ribonucleic acid-dependent polymerase. J Virol. 1970 Jul;6(1):1–11. doi: 10.1128/jvi.6.1.1-11.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Levin D. H., Mendelsohn N., Schonberg M., Klett H., Silverstein S., Kapuler A. M., Acs G. Properties of RNA transcriptase in reovirus subviral particles. Proc Natl Acad Sci U S A. 1970 Jul;66(3):890–897. doi: 10.1073/pnas.66.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Shatkin A. J., Rada B. Reovirus-directed ribonucleic acid synthesis in infected L cells. J Virol. 1967 Feb;1(1):24–35. doi: 10.1128/jvi.1.1.24-35.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Silverstein S. C., Schonberg M., Levin D. H., Acs G. The reovirus replicative cycle: conservation of parental RNA and protein. Proc Natl Acad Sci U S A. 1970 Sep;67(1):275–281. doi: 10.1073/pnas.67.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Spiegelman S., Pace N. R., Mills D. R., Levisohn R., Eikhom T. S., Taylor M. M., Peterson R. L., Bishop D. H. The mechanism of RNA replication. Cold Spring Harb Symp Quant Biol. 1968;33:101–124. doi: 10.1101/sqb.1968.033.01.015. [DOI] [PubMed] [Google Scholar]
  7. Sugimoto K., Okazaki T., Imae Y., Okazaki R. Mechanism of DNA chain growth. 3. Equal annealing of T4 nascent short DNA chains with the separated complementary strands of the phage DNA. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1343–1350. doi: 10.1073/pnas.63.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tavitian A., Uretsky S. C., Acs G. Selective inhibition of ribosomal RNA synthesis in mammalian cells. Biochim Biophys Acta. 1968 Mar 18;157(1):33–43. doi: 10.1016/0005-2787(68)90261-x. [DOI] [PubMed] [Google Scholar]
  9. Watanabe Y., Kudo H., Graham A. F. Selective inhibition of reovirus ribonucleic acid synthesis by cycloheximide. J Virol. 1967 Feb;1(1):36–44. doi: 10.1128/jvi.1.1.36-44.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Weissmann C., Feix G., Slor H., Pollet R. Replication of viral RNA. XIV. Single-stranded minus strands as template for the synthesis of viral plus strands in vitro. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1870–1877. doi: 10.1073/pnas.57.6.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES