Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Mar;68(3):590–594. doi: 10.1073/pnas.68.3.590

Amino Acid Sequences of Two Mouse Immunoglobulin Lambda Chains

Ettore Appella 1
PMCID: PMC388996  PMID: 5276767

Abstract

The amino acid sequences of the lambda chains of two mouse immunoglobulins have been determined. No variations were found between these proteins. The results are compatible with earlier fingerprinting analysis of the two chains, where no differences in the tryptic peptides could be demonstrated. The lack of sequence variations could be the result either of a peculiarly restricted expression of the lambda variable-region genome in the BALB/c myelomas or a small number of germ-line genes involved in the biosynthesis of light chains of the lambda type.

Full text

PDF
590

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appella E., McIntire K. R., Perham R. N. Lambda Bence Jones proteins of the mouse: chemical and immunological characterization. J Mol Biol. 1967 Jul 28;27(2):391–394. doi: 10.1016/0022-2836(67)90028-9. [DOI] [PubMed] [Google Scholar]
  2. Appella E., Perham R. N. Amino-terminal sequences of two mouse lambda chains. J Mol Biol. 1968 May 14;33(3):963–966. doi: 10.1016/0022-2836(68)90333-1. [DOI] [PubMed] [Google Scholar]
  3. GLADNER J. A., FOLK J. E. Carboxypeptidase B. II. Mode of action on protein substrates and its application to carboxyl terminal group analysis. J Biol Chem. 1958 Mar;231(1):393–401. [PubMed] [Google Scholar]
  4. Hood L., Talmage D. W. Mechanism of antibody diversity: germ line basis for variability. Science. 1970 Apr 17;168(3929):325–334. doi: 10.1126/science.168.3929.325. [DOI] [PubMed] [Google Scholar]
  5. KONIGSBERG W., HILL R. J. The structure of human hemoglobin. III. The sequence of amino acids in the tryptic peptides of the alpha chain. J Biol Chem. 1962 Aug;237:2547–2561. [PubMed] [Google Scholar]
  6. Langer B., Steinmetz-Kayne M., Hilschmann N. Die vollständige Aminosäuresequenz des Bence-Jones-proteins new (lambda-Typ) Subgruppen im variablen Teil bei Immunglobulin-L-Ketten vom lambda-Typ. Hoppe Seylers Z Physiol Chem. 1968 Jul;349(7):945–951. [PubMed] [Google Scholar]
  7. McIntimif K. R., Asofsky R. M., Potter M., Kuff E. L. Macroglobulin-Producing Plasma-Cell Tumor in Mice: Identification of a New Light Chain. Science. 1965 Oct 15;150(3694):361–363. doi: 10.1126/science.150.3694.361. [DOI] [PubMed] [Google Scholar]
  8. Milstein C. Linked groups of residues in immunoglobulin k chains. Nature. 1967 Oct 28;216(5113):330–332. doi: 10.1038/216330a0. [DOI] [PubMed] [Google Scholar]
  9. Pisano J. J., Bronzert T. J. Analysis of amino acid phenylthiohydantoins by gas chromatography. J Biol Chem. 1969 Oct 25;244(20):5597–5607. [PubMed] [Google Scholar]
  10. Smithies O. Antibody variability. Somatic recombination between the elements of "antibody gene pairs" may explain antibody variability. Science. 1967 Jul 21;157(3786):267–273. doi: 10.1126/science.157.3786.267. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES