Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Mar;68(3):629–631. doi: 10.1073/pnas.68.3.629

The Question of Histidine Content in c-Type Cytochromes

M A Cusanovich *, T Meyer , S M Tedro , M D Kamen
PMCID: PMC389004  PMID: 5276772

Abstract

Reports that histidine may not occur in heme peptides derived from c-type cytochromes isolated from chloroplasts of Euglena gracilis and Porphyra sp. have not been substantiated in the present investigation, in which the amino acid composition and a partial sequence were determined for a heme peptide derived from the c-type cytochromes of a strain of Euglena closely related to that used in the previous studies. It is concluded that no evidence exists to challenge the generalization that histidine is always present vicinal to the hemebinding site in c-type cytochromes.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBLER R. P. THE AMINO ACID SEQUENCE OF PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:349–378. doi: 10.1042/bj0890349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DOOLITTLE R. F. CHARACTERIZATION OF LAMPREY FIBRINOPEPTIDES. Biochem J. 1965 Mar;94:742–750. doi: 10.1042/bj0940742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DUS K., KAMEN M. D. COMPARATIVE STRUCTURAL STUDIES ON SOME BACTERIAL HEME PROTEINS. Biochem Z. 1963;338:364–375. [PubMed] [Google Scholar]
  5. Dus K., Sletten K., Kamen M. D. Cytochrome c2 of Rhodospirillum rubrum. II. Complete amino acid sequence and phylogenetic relationships. J Biol Chem. 1968 Oct 25;243(20):5507–5518. [PubMed] [Google Scholar]
  6. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  7. Evans W. R., San Pietro A. Phosphorolysis of adenosine diphosphoribose. Arch Biochem Biophys. 1966 Jan;113(1):236–244. doi: 10.1016/0003-9861(66)90178-0. [DOI] [PubMed] [Google Scholar]
  8. HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
  9. MATSUBARA H., SMITH E. L. HUMAN HEART CYTOCHROME C. CHYMOTRYPTIC PEPTIDES, TRYPTIC PEPTIDES, AND THE COMPLETE AMINO ACID SEQUENCE. J Biol Chem. 1963 Aug;238:2732–2753. [PubMed] [Google Scholar]
  10. Nolan C., Margoliash E. Comparative aspects of primary structures of proteins. Annu Rev Biochem. 1968;37:727–790. doi: 10.1146/annurev.bi.37.070168.003455. [DOI] [PubMed] [Google Scholar]
  11. PERINI F., KAMEN M. D., SCHIFF J. A. IRON-CONTAINING PROTEINS IN EUGLENA. I. DETECTION AND CHARACTERIZATION. Biochim Biophys Acta. 1964 Jul 29;88:74–90. doi: 10.1016/0926-6577(64)90155-x. [DOI] [PubMed] [Google Scholar]
  12. SCHACHMAN H. K. Deductions from hydrodynamic and thermodynamic measurements. Brookhaven Symp Biol. 1960 Nov;13:49–70. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES