Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Mar;68(3):690–694. doi: 10.1073/pnas.68.3.690

Direction of Chain Elongation in the Formation of Escherichia coli Ribosomal Protein

Sun Ao Iwata 1, Hideko Kaji 1
PMCID: PMC389018  PMID: 5276782

Abstract

Ribosomal proteins were isolated from logarithmically growing Escherichia coli cells given [14C]alanine for short periods. Surprisingly, the specific activity of alanine at the NH2-terminal end was higher than that of alanine released by carboxypeptidase A digestion of the ribosomal protein. To determine the direction of chain elongation more precisely, Escherichia coli cells were grown with [3H]amino acids, and [14C]amino acids were then given to the 3H-labeled cells as a pulse. Radioactive 30S ribosomal proteins were isolated from these cells and subjected to carboxypeptidase digestion. The ratio of 14C to 3H of the released amino acids increased as the time for carboxypeptidase digestion progressed. These observations suggest that some of the ribosomal proteins may be synthesized from the carboxyl end to the amino end through a novel mechanism.

Full text

PDF
690

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craven G. R., Voynow P., Hardy S. J., Kurland C. G. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2906–2915. doi: 10.1021/bi00835a032. [DOI] [PubMed] [Google Scholar]
  2. DINTZIS H. M. Assembly of the peptide chains of hemoglobin. Proc Natl Acad Sci U S A. 1961 Mar 15;47:247–261. doi: 10.1073/pnas.47.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  4. GOLDSTEIN A., GOLDSTEIN D. B., LOWNEY L. I. PROTEIN SYNTHESIS OF 0 DEGREES C IN ESCHERICHIA COLI. J Mol Biol. 1964 Jul;9:213–235. doi: 10.1016/s0022-2836(64)80102-9. [DOI] [PubMed] [Google Scholar]
  5. KAJI A., KAJI H., NOVELLI G. D. SOLUBLE AMINO ACID-INCORPORATING SYSTEM. II. SOLUBLE NATURE OF THE SYSTEM AND THE CHARACTERIZATION OF THE RADIOACTIVE PRODUCT. J Biol Chem. 1965 Mar;240:1192–1197. [PubMed] [Google Scholar]
  6. KAJI H., KAJI A. SPECIFIC BINDING OF SRNA WITH THE TEMPLATE-RIBOSOME COMPLEX. Proc Natl Acad Sci U S A. 1964 Dec;52:1541–1547. doi: 10.1073/pnas.52.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaempfer R. O., Magasanik B. Effect of infection with T-even phage on the inducible synthesis of beta-glactosidase in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):453–468. doi: 10.1016/0022-2836(67)90051-4. [DOI] [PubMed] [Google Scholar]
  8. Kaji H., Suzuka I., Kaji A. Binding of specific soluble ribonucleic acid to ribosomes. Binding of soluble ribonucleic acid to the template-30 S subunits complex. J Biol Chem. 1966 Mar 25;241(6):1251–1256. [PubMed] [Google Scholar]
  9. Kurland C. G., Voynow P., Hardy S. J., Randall L., Lutter L. Physical and functional heterogeneity of E. coli ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:17–24. doi: 10.1101/sqb.1969.034.01.006. [DOI] [PubMed] [Google Scholar]
  10. Traut R. R., Delius H., Ahmad-Zadeh C., Bickle T. A., Pearson P., Tissières A. Ribosomal proteins of E. Coli: stoichiometry and implications for ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:25–38. doi: 10.1101/sqb.1969.034.01.007. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES