Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Apr;68(4):773–776. doi: 10.1073/pnas.68.4.773

The Influence of Neighboring Base Pairs upon Base-Pair Substitution Mutation Rates

Robert E Koch 1
PMCID: PMC389040  PMID: 5279518

Abstract

The 2-aminopurine-induced transition, A·T → G·C, was studied at particular sites in bacteriophage T4 as a function of the nearby base-pair composition of the DNA. Changing a base pair changed the transition rate at the adjacent base pair up to 23-fold, and at the next base pair by a lesser amount. Destabilization was achieved by replacing an A·T base pair by a G·C base pair.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzer S., Freese E. INDUCTION OF SPECIFIC MUTATIONS WITH 5-BROMOURACIL. Proc Natl Acad Sci U S A. 1958 Feb;44(2):112–119. doi: 10.1073/pnas.44.2.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benzer S. ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. Proc Natl Acad Sci U S A. 1961 Mar;47(3):403–415. doi: 10.1073/pnas.47.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner S., Stretton A. O., Kaplan S. Genetic code: the 'nonsense' triplets for chain termination and their suppression. Nature. 1965 Jun 5;206(988):994–998. doi: 10.1038/206994a0. [DOI] [PubMed] [Google Scholar]
  4. Browne D. T., Eisinger J., Leonard N. J. Synthetic spectroscopic models related to coenzymes and base pairs. II. Evidence for intramolecular base-base interactions in dinucleotide analog. J Am Chem Soc. 1968 Dec 18;90(26):7302–7323. doi: 10.1021/ja01028a023. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W., Allen E. F., Forsberg S. A., Preparata R. M., Greening E. O. Genetic control of mutation rates in bacteriophageT4. Nature. 1969 Mar 22;221(5186):1128–1132. [PubMed] [Google Scholar]
  6. Lindstrom D. M., Drake J. W. Mechanics of frameshift mutagenesis in bacteriophage T4: role of chromosome tips. Proc Natl Acad Sci U S A. 1970 Mar;65(3):617–624. doi: 10.1073/pnas.65.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McClain W. H. UAG suppressor coded by bacteriophage T4. FEBS Lett. 1970 Jan 26;6(2):99–101. doi: 10.1016/0014-5793(70)80011-4. [DOI] [PubMed] [Google Scholar]
  8. Rogan E. G., Bessman M. J. Studies on the pathway of incorporation of 2-aminopurine into the deoxyribonucleic acid of Escherichia coli. J Bacteriol. 1970 Sep;103(3):622–633. doi: 10.1128/jb.103.3.622-633.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sambrook J. F., Fan D. P., Brenner S. A strong suppressor specific for UGA. Nature. 1967 Apr 29;214(5087):452–453. doi: 10.1038/214452a0. [DOI] [PubMed] [Google Scholar]
  10. Stretton A. O., Kaplan S., Brenner S. Nonsense codons. Cold Spring Harb Symp Quant Biol. 1966;31:173–179. doi: 10.1101/sqb.1966.031.01.025. [DOI] [PubMed] [Google Scholar]
  11. Szer W., Shugar D. The structure of poly-5-methylcytidylic acid and its twin-stranded complex with poly-inosinic acid. J Mol Biol. 1966 May;17(1):174–187. doi: 10.1016/s0022-2836(66)80102-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES