Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Apr;68(4):805–809. doi: 10.1073/pnas.68.4.805

Conformational Changes in Ribosomes during Protein Synthesis

Max H Schreier 1,*, Hans Noll 1,
PMCID: PMC389048  PMID: 4927674

Abstract

In a purified system containing poly(U) and ribosomal subunits from Escherichia coli, and purified transfer factors T and G, the active ribosomal complex passes through a cycle of contraction and expansion with the addition of each amino acid; aminoacyl-tRNA binding catalyzed by T produces the stable compact state, corresponding to the 70S conformation, whereas translocation with G expands the ribosome to a less stable 60S form. It is also shown that formation of the first peptide bond must be preceded by translocation with G. These findings are consistent with a model of chain initiation in the absence of initiation factors in which deacylated tRNAPhe bound to the P site signals translocation by G and GTP as soon as the 60S initiation complex has been converted to the 70S form by the enzymatic binding of Phe-tRNA.

Full text

PDF
805

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bretscher M. S. Translocation in protein synthesis: a hybrid structure model. Nature. 1968 May 18;218(5142):675–677. doi: 10.1038/218675a0. [DOI] [PubMed] [Google Scholar]
  2. Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
  3. HIEROWSKI M. INHIBITION OF PROTEIN SYNTHESIS BY CHLORTETRACYCLINE IN THE E. COLI IN VITRO SYSTEM. Proc Natl Acad Sci U S A. 1965 Mar;53:594–599. doi: 10.1073/pnas.53.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hardesty B., Culp W., McKeehan W. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:331–345. doi: 10.1101/sqb.1969.034.01.040. [DOI] [PubMed] [Google Scholar]
  5. Jost M., Shoemaker N., Noll H. Stepwise reconstruction of a ternary complex in protein synthesis. Nature. 1968 Jun 29;218(5148):1217–1223. doi: 10.1038/2181217a0. [DOI] [PubMed] [Google Scholar]
  6. Kaji A., Igarashi K., Ishitsuka H. Interaction of tRNA with ribosomes--binding and release of tRNA. Cold Spring Harb Symp Quant Biol. 1969;34:167–177. doi: 10.1101/sqb.1969.034.01.024. [DOI] [PubMed] [Google Scholar]
  7. Lucas-Lenard J., Haenni A. L. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969 May;63(1):93–97. doi: 10.1073/pnas.63.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noll H. Chain initiation and control of protein synthesis. Science. 1966 Mar 11;151(3715):1241–1245. doi: 10.1126/science.151.3715.1241. [DOI] [PubMed] [Google Scholar]
  11. Noll H. Organelle integration and the evolution of ribosome structure and function. Symp Soc Exp Biol. 1970;24:419–447. [PubMed] [Google Scholar]
  12. Pestka S., Nirenberg M. Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes. J Mol Biol. 1966 Oct 28;21(1):145–171. doi: 10.1016/0022-2836(66)90085-4. [DOI] [PubMed] [Google Scholar]
  13. Schreier M. H., Noll H. Chain initiation in primitive protein synthesis: a 60S intermediate in the formation of active 70S ribosomes. Nature. 1970 Jul 11;227(5254):128–133. doi: 10.1038/227128a0. [DOI] [PubMed] [Google Scholar]
  14. Shorey R. L., Ravel J. M., Garner C. W., Shive W. Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex. J Biol Chem. 1969 Sep 10;244(17):4555–4564. [PubMed] [Google Scholar]
  15. Skogerson L., Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968 May;125(2):497–505. doi: 10.1016/0003-9861(68)90607-3. [DOI] [PubMed] [Google Scholar]
  16. Spirin A. S. O mekhanizme raboty ribosomy gipoteza smykaniia-razmykaniia subchastits. Dokl Akad Nauk SSSR. 1968 Apr 21;179(6):1467–1470. [PubMed] [Google Scholar]
  17. Wahba A. J., Salas M., Stanley W. M., Jr Studies on the translation of the genetic message. II. Translation of oligonucleotide messengers of specified base sequence. Cold Spring Harb Symp Quant Biol. 1966;31:103–111. doi: 10.1101/sqb.1966.031.01.017. [DOI] [PubMed] [Google Scholar]
  18. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES