Skip to main content
ZooKeys logoLink to ZooKeys
. 2013 Dec 30;(365):25–48. doi: 10.3897/zookeys.365.6287

DNA barcoding of Dutch birds

Mansour Aliabadian 1,2, Kevin K Beentjes 2, CS (Kees) Roselaar 2, Hans van Brandwijk 2, Vincent Nijman 3, Ronald Vonk 2,4
PMCID: PMC3890669  PMID: 24453549

Abstract Abstract

The mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by > 2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorarius) having at least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present.

Keywords: Aves, conservation, cytochrome c oxidase subunit I, COI, taxonomy

Introduction

DNA barcoding is used as an effective tool for both the identification of known species and the discovery of new ones (Hebert et al. 2003, 2010, Savolainen et al. 2005). The core idea of DNA barcoding is based on the fact that just a small portion of a single gene, comprising a 650 to 700 bp fragment from the first half of the mitochondrial cytochrome c oxidase subunit I gene (COI), shows a lower intraspecific than interspecific variation. An attribute which characterizes a threshold of variation for each taxonomic group, above which a group of individuals does not belong to the same species but instead forms an intraspecific taxon. In other words, the recognition of patterns in sequence diversity of a small fragment from the mtDNA genome has led to an alternative approach for species identification across phyla.

Initially, DNA barcodes were proposed for the Animal Kingdom in 2003, when Hebert and colleagues tested a single gene barcode to identify species and coined the term ‘DNA barcoding’ (Hebert et al. 2003). Since that time COI sequences have been used as identifiers in the majority of animal phyla including vertebrates (e.g. Hebert et al. 2004, Ward et al. 2005, Kerr et al. 2007, Smith et al. 2008, Nijman and Aliabadian 2010, Luo et al. 2011) and invertebrates (Hajibabaei et al. 2006, Bucklin et al. 2011, Hausmann et al. 2011). In recent years, the practical utility of DNA barcodes proved to be an appealing tool to help resolve taxonomic ambiguity (Hebert et al. 2004, 2010), to screen biodiversity (e.g. Plaisance et al. 2009, Naro-Maciel et al. 2009, Grant et al. 2011), and to support applications in conservation biology (Neigel et al. 2007, Rubinoff 2006, Dalton and Kotze 2011).

Birds are among the best-known classes of animals and thus provide a taxonomically good model for analyzing the applicability of DNA barcoding. In the last seven years some 30 scientific papers have been published on the DNA barcoding of bird species, which combined have been cited 500 times (V. Nijman, unpubl. data April 2013). Most of the studies have shown that from this small fragment of DNA, individuals have been identified down to species level for 94% of the species in Scandinavian birds (Johnsen et al. 2010), 96% in Nearctic birds (Kerr et al. 2009a), 98% in Holarctic birds (Aliabadian et al. 2009) and 99% in Argentinean and South Korean birds (Kerr et al. 2009a, Yoo et al. 2006). Species delineation relying on the use of theshold set to differentiate between intraspecific variation and interspecific divergence has been criticized as leading to too unacceptable high error rates especially in incompletely samples groups (Meyer and Paulay 2005). However, even the critics of DNA barcoding concede that DNA barcoding holds promise for identification in taxonomically well-understood and thoroughly sampled clades. Birds are taxonomically well-known, especially those of the Western Palearctic to which the Netherlands, our study area, forms part. As noted by Taylor and Harris (2012), compared to other taxa that have been subjected to DNA barcoding, DNA barcoding studies of birds tend to represent aggregations of very large number of bird species barcodes. These often include (near) cosmopolitan species with samples from distant geographic locations potentially increasing the amount of interspecific variation in COI.

Here we explore the efficiency of identifying species using DNA barcoding from a large set of sympatric bird species in the Netherlands. Compared to previous studies on birds, our study area covers a very small geographic area, allowing to directly test the functionality of DNA barcoding ‘in one’s backyard’.

Methods

Sampling

The Netherlands is a small, densely populated country in northwestern Europe, with a land surface area of some 34 000 km2, and ornithologically it is arguable one of the best-covered countries (Sovon 2002). The tissue samples used for sequencing were collected from breeding areas in the Netherlands, excluding oversees dependencies. Given the small size of the country some 95% of the samples were collected within a 50 km-radius of each other. Samples were part of the tissue collection of the Zoological Museum of Amsterdam (ZMA), which were recently relocated and deposited in the Naturalis Biodiversity Center, Leiden. Most were collected in the period 2000–2012 by a network of volunteers, ringers, airport staff, and bird asylums; no birds were specifically collected or killed to be included in the collection of the ZMA. Species and subspecies identification was based on morphology and when necessary, external measurements. These identifications were done by authors HvB and CSR, with the help of Tineke G. Prins. Individual birds were frozen upon arrival to be thawed and skinned at a later date, and indeed many birds arrived frozen. Samples were mostly taken from the bird’s pectorial muscles, because of its size and easy access, and stored in 96% ethanol. Species nomenclature follows the taxonomy of Dickinson (2003). The complete list of sampled specimens including information about vouchers and trace files is available from the project ‘Aves of the Netherlands’ at the BOLD website (http://www.barcodinglife.com/).

PCR and sequencing

The tissue samples were subsampled and subjected to DNA extraction using DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s protocol. PCR and sequencing reactions were performed, mainly following the same protocols described in Förschler et al. (2010), but with some minor modifications. Polymerase chain reaction (PCR) amplifications were initially performed using standard primers BirdF1 (TTCTCCAACCACAAAGACATTGGCAC) and BirdR1 (ACGTGGGAGATAATTCCAAATCCTG). When amplification was unsuccessful, alternate reverse primer BirdR2 (ACTACATGTGAGATGATTCCGAATCCAG) was used in combination with BirdF1 or alternate primer pair CO1-ExtF (ACGCTTTAACACTCAGCCATCTTACC) and CO1-ExtR (AACCAGCATATGAGGGTTCGATTCCT) was used (Hebert et al. 2004, Johnsen et al. 2010). All PCRs were run under the following thermal cycle program: 3 min at 94 °C followed by 40 cycles of 15 s at 94 °C, 30 s at 50 °C and 40 s at 72 °C, and a final elongation of 5 min at 72 °C. For each reaction the PCR mixture consisted of 2.5 µl Qiagen Coral Load 10 × PCR buffer, 1.0 µl of each 10 mM primer, 0.5 µl 2.5 mM dNTPs, 0.25 µl 5 U/µl QiagenTaq DNA polymerase, 18.75 µl milliQ and 1.0 µl template DNA for a total volume of 25 µl. Bi-directional sequencing was performed for all specimens at Macrogen. We checked the possible amplification of pseudogenes (Numts) by translating the protein coding genes into amino acids sequences, but we did not observe any unexpected stop codons, frameshifts or unusual amino acidic substitutions. Furthermore we amplified a longer sequence of the COI gene with primers (CO1-ExtF and CO1-ExtR) for selected samples, and also here we did not see any indication of pseudogene co-amplification. Lijtmaer et al. (2012) found that, in birds, full-length COI pseudogenes are uncommon noting that they might be more frequently encountered when working with avian blood samples as opposed to muscle tissue samples (as used in here).

Data analysis

Sequences shorter than 500 bp and containing more than 10 ambiguous nucleotides were excluded from the analyses. All sequences have been deposited in GenBank (Accession numbers KF946551 to KF946937). A full list of the museum vouchers, for all specimens applied in this study, is provided in AppendixTable 1.

For all sequence comparisons, the Kimura 2-parameter (K2P) model was used, because it is shown to be the best metric to compare closely related taxa (Nei and Kumar 2000, but for a contrasting view see Srivathsan and Meier 2012). Average intraspecific distances were calculated for those species that were represented by at least two specimens using MEGA5 software (Tamura et al. 2011).

For a group of birds that expressed a larger than expected intraspecific variation, the Sylvia warblers, we created a phylogenetic tree and created a haplotype network. We chose GTR+G+I as the best-fitting model of nucleotide substitution based on its Akaike’s information criterion as implemented in JModelTest v0.1.1 (Posada 2008). A maximum likelihood (ML) tree was constructed in PAUP* v4.0b10 (Swofford 2002) using a heuristic search with the tree-bisection-reconnection branch-swapping algorithm and random addition of taxa. Relative branch support was evaluated with 500 bootstrap replicates (Felsenstein 1985). A minimum spanning haplotype network was constructed using a statistical parsimony network construction approach as implemented in TCS software package (Clement et al. 2000). This programme calculates the number of mutational steps by which pairwise haplotypes differ and computes the probability of parsimony (Templeton et al. 1992) for pairwise differences until the probability exceeds 0.95. The number of mutational differences associated with the probability just before the 0.95 cut-off point is then the maximum number of mutational connections between pairs of sequences justified by the parsimony criterion; these justified connections are applied in the haplotype network (Clement et al. 2000).

Results

A total of 387 sequences for 141 species (representing at least 158 taxa) were retrieved, including 52% of the breeding bird species in the Netherlands (Supplementary table 1). The average number of sequences per species was 3.36 (range 1-13), with 83 species (59%) represented by more than two sequences. The mean K2P-divergence within species bears no significant relationship with sample sizes, i.e. number of sequences per species (R2 = 0.001, p = 0.465). The mean intraspecific K2P-distance was 0.29% (range 0-8.68%) some 30 times lower than the mean intrageneric K2P-distances (9.54%, range 0-27.71%) (Table 1, Figure 1).

Table 1.

Comparisons of K2P-pairwise distances within various taxonomic levels for 83 species of birds from the Netherlands for which two or more sequences were available. Distances are expressed in percentages.

Individuals Taxa Comparisons Distances
Minimum Mean ± S.E.M. Maximum
Within Species 340 83 805 0 0.294±0.001 8.683
Within Genera 203 23 794 0 9.544±0.004 15.849
Within Families 282 20 2519 5.809 14.467±0.001 20.473

Figure 1.

Figure 1.

Comparisons of K2P-pairwise distances based on the COI gene of 141 species of birds from the Netherlands, showing a clear barcoding gap. Interspecific distances are indicated with light grey bars and intraspecific distances with dark grey bars. Left Y-axis: numbers of intraspecific comparisons; Right Y-axis: numbers of interspecific comparisons.

In general, 95% of species (134 species) showed a unique DNA barcode (these included the 58 species for which we only sequenced single individuals), while six congeneric species shared the same barcode and the mean intraspecific distance of them fell well below the threshold of species based on distance-based criterion (Hebert et al. (2003) 10 × rule). These congeneric species mostly included circumpolar species with close morphological similarities (Table 2).

Table 2.

Bird species (Charadriiformes) from the Netherlands with one or more shared DNA barcodes (K2P-distances of 0%). For a detailed breakdown of the individual samples involved see AppendixTable 2.

Family Species Nearest species Mean K2P-distance (%)
Laridae Herring Gull Larus argentatus Yellow-legged Gull Larus michahellis 0.14
Lesser Black-backed Gull Larus fuscus Caspian Gull Larus cachinnans 0
Iceland Gull Larus glaucoides Caspian Gull Larus cachinnans 0
Glaucous Gull Larus hyperboreus Yellow-legged Gull Larus michahellis 0.58
Yellow-legged Gull Larus michahellis Caspian Gull Larus cachinnans 0
Stercorariidae Great Skua Stercorarius skua Pomarine Skua Stercorarius pomarinus 0.30

Although most species possessed low intraspecific distances, one species showed high intraspecific K2P-distances clearly above the threshold of 2 to 3 per cent sequence divergence in our data set. This is the Lesser Whitethroat Sylvia curruca, with a mean interspecific divergence of 5.76% and a maximum interspecific distance of 8.68%. Two subspecies occur in the Netherlands, i.e. the Western Lesser Whitethroat Sylvia curruca curruca and, as a migrant, the Northeastern Lesser Whitethroat Sylvia curruca blythi. Both are morphologically somewhat distinct, with compared to the nominate Sylvia curruca blythi having a paler top of the head, separated from face by a white supercilium, and geographically the nominate occupies the western part of the species range and Sylvia curruca blythi the eastern part. A maximum likelihood tree for these two taxa based on K2P-model is presented in Figure 2. Two different haplotype networks, one each for Sylvia curruca curruca and Sylvia curruca blythi were recovered by TCS (Figure 3), and given the large genetic distances between their haplotypes, the two taxa are not included in the same haplotype network.

Figure 2.

Figure 2.

Phylogenetic relationships of two putative subspecies of Lesser Whitethroat, i.e. the Western Lesser Whitethroat Sylvia curruca curruca and the Northeastern Lesser Whitethroat Sylvia curruca blythi from the Netherlands, based on analysis of 694 bp of the mitochondrial cytochrome c oxidase subunit I gene (COI). Bootstrap values are given for the maximum likelihood (ML) analysis.

Figure 3.

Figure 3.

Haplotype networks constructed with statistical parsimony based on 694 bp of the mitochondrial cytochrome c oxidase subunit I gene (COI) of the Sylvia group (25 individuals). Each circle represents one haplotype; size of circles is proportional to haplotype frequency.

Discussion

We here present the results of a modest effort to barcode the avifauna of the Netherlands. In terms of DNA barcoding of birds, the Netherlands form the southernmost part of one of the most densely sampled regions globally (Lijtmaer et al. 2012: figure 1). In addition, many of the species that overwinter in the country originate equally well-sampled regions to the north. As such our study adds to a growing number of studies allowing us to build up comprehensive public libraries of bird barcodes. Combined these allow us to explore new lines of scientific inquiry and practical applications (Hebert et al. 2010, Lijtmaer et al. 2012, but see Ebach and Carvalho 2010). The collection of our samples was done as part of the museum’s standard collection management of newly obtained material, and as such sample collection was inexpensive and required little effort in terms of manpower. All birds were collected and processed in the Netherlands and did not require specific permits other than the ones already required to curate the collections.

Recently, Taylor and Harris (2012) expressed the opinion that proponents of DNA barcoding consistently fail to recognize its limitations (including, but not restricted to, the functioning of COI as a universal barcoding gene, whether its use is to be restricted to species identification only or whether it has a role in species discovery and delimitation and the failure to have sufficient systems in place to deal with the large amounts of data generated), do not evolve their methodologies, and do not embrace the possibilities that next-generation sequencing offers. We agree that DNA barcoding will not offer a panacea for all the issues Taylor and Harris (2012) raised, or indeed some of its earlier critics (Will et al. 2005, Moritz and Cicero 2004) but we point out that for this was probably never the intention of DNA barcoding when envisaged some ten years ago. Irrespective of the aims and goals of DNA barcoding as a ‘global enterprise’ (Ebach and Carvalho 2010), we found it a useful tool in our studies on birds (cf. Baker et al. 2009). The bird collection of the Zoological Museum Amsterdam, and our sample reported in this study, was well-curated by knowledgeable staff, with a very high degree of taxonomic certainty attached to each individual specimen. We see immense value to having a DNA barcoding dataset linked to this reference collection. As such this work has added to the growing library of DNA barcodes of bird species of the world and subsequent improvement in our knowledge of biodiversity.

The mean intraspecific divergences found in the birds of the Netherlands (0.29%, based on 147 species) is congruent with that of for instance Argentina (0.24%, 500 species), North America (0.23%, 643 species) and the Holarctic (0.24%, 566 species) (Kerr et al. 2009a, Aliabadian et al. 2009). More importantly, like other studies on birds, the efficiency of DNA barcode sequences to identify species is high, showing a clear barcoding gap (Figure 1), and overall it seems that for birds typically 95% or more of the species can be identified (Hebert et al. 2003, Johnsen et al. 2010, Kerr et al. 2009a, b, Yoo et al. 2006, Aliabadian et al. 2009).

Most DNA barcoding studies of birds flag a small number of deep divergences (e.g. Johnsen et al. 2010, Kerr et al. 2009b, Aliabadian et al. 2009, Nijman and Aliabadian 2013), in our study involving the two subspecies of Sylvia curruca, where the two lineages diverge almost 6%. Similar results were found by Olsson et al. (2013) when analyzing the cytochrome b gene for these two taxa, with distances in the order of 11-14%. Based on COI sequences, the two taxa appear to be sister taxa, albeit with a relatively low support (Figure 3), but no other members of the Sylvia curruca were included in the analysis. In contrast, having included a range of other members of this complex, Olsson et al. (2013) found curruca and blythi not to be sister taxa. Olsson et al. (2013: 81) concluded that while “due to their morphological similarity it is unclear where their ranges meet, [o]ur data suggest that blythi is a valid taxon, not closely related to curruca. It has its closest relatives to the south-east [Asia], and may have colonised the eastern taiga from this direction, ultimately coming into contact with curruca”. When it comes to drawing conclusion from their work with respect to taxomomy, Olsson et al. (2013) were, in our view correctly, cautious. They noted that the Sylvia curruca complex comprised up to 13 taxa with little consensus as to circumscription and taxonomic rank. Of these, morphologically some taxa are very similar, including Sylvia curruca curruca and Sylvia curruca blythi, and the apparent conflict between morphology and phylogeny (based in their case on cyt b and in our study on COI) can be explained in different ways. One would be to accept the single mitochondrial gene trees at face value in which case the morphological similarities in pelage coloration may be a result of parallel evolution possibly in response to adaptations to similar temperate forest habitats – both taxa are then best treated as different species. Alternatively, the mitochondrial gene trees do not reflect the species tree and, based on morphological similarities, Sylvia curruca curruca and Sylvia curruca blythi are best treated as sister taxa (either as one or two species). Their divergent position on the mitochondrial gene tree, and the large genetic distances between these taxa, are due to ancient mitochondrial introgression. In either case, working with single mitochondrial markers cannot not resolve this issue and a more integrative approach ideally involving the analysis of nuclear genes is paramount.

Those cases where we found species sharing the same DNA barcodes were small in number but not insignificant. Seven of the eight cases involved closely related gulls with partially overlapping ranges, or allopatric distributions, that are part of a recent Holarctic radiation (Liebers-Helbig et al. 2010). Alternatively, the sharing of DNA barcodes may be due to hybridization or, perhaps less likely, misidentification. Likewise, skuas are part of a recent radiation with, just like gulls, frequent hybridization between species (Ritz 2009). DNA barcoding using a relative slowly evolving maternally inherited gene, with, compared to other mitochondrial genes, small amounts of rate heterogeneity (Pacheco et al. 2011), will, on its own, not be able to differentiate between these taxa.

We conclude that DNA barcoding approach makes it possible to identify known Dutch bird species with a very high resolution. Although some species were flagged for further detailed taxonomic investigation, our study reaffirms once more that a short segment of COI gene can be used to handle large number of taxa and aid in detecting overlooked taxa and hybridizing species with low deep barcode divergences.

Acknowledgements

We thank Tineke G Prins, involved in the sampling and administering of the bird specimens over the years in the Zoological Museum Amsterdam, for her commitment and hard work, and Miguel Vences, formerly of the Zoological Museum Amsterdam and currently at the Technical University Braunschweig, as the initiator of this project. Hans Breeuwer, Betsy Voetdijk, Peter Kuperus, and Lin Dong are thanked for their support and advice in the molecular laboratory of the Evolutionary Biology Department, University of Amsterdam. Finally, we thank the editors of this special issue for their patience, guidance and support, and two sets of reviewers for constructive comments: combined their efforts greatly improved the quality and clarity of the work. Our molecular work is funded in part by the Fonds Economische Structuurversterking. We dedicate this paper to the memory of Jan Wattel, former curator of birds at the Zoological Museum Amsterdam, who passed away in March 2013.

Appendix

Supplementary table 1.

List of all Dutch birds that have been sequenced in this study, with voucher numbers and collection localities. Note that specimens from which only tissue samples have been taken have not been given a collection number, sine loco refers to specimens collected in the Netherlands but without a precise named collection locality. Localities in the province of Friesland are listed with their Dutch name first, followed by their Frisian name. Coordinates are given in decimal degrees.

Species or subspecies ZMA number Preparation Locality Coordinates Access numbers
Accipiter gentilis gentilis ZMA58297 skin Zaandam 52.25N, 4.49E KF946551
Accipiter gentilis gentilis ZMA58724 skin De Rips 51.32N, 5.48E KF946552
Accipiter nisus nisus ZMA58243 skin Malden 51.47N, 5.52E KF946553
Accipiter nisus nisus ZMA58245 skin Helden 51.21N, 5.55E KF946554
Accipiter nisus nisus ZMA58246 skin Reuver 51.17N, 6.04E KF946555
Accipiter nisus nisus ZMA58247 skin Culemborg 51.55N, 5.15E KF946556
Accipiter nisus nisus ZMA58248 skin Amsterdam 52.21N, 4.53E KF946557
Accipiter nisus nisus ZMA58741 skin Amsterdam 52.21N, 4.53E KF946558
Accipiter nisus nisus ZMA58742 skin Montfort 51.07N, 5.56E KF946559
Accipiter nisus nisus ZMA58743 skin Belfeld 51.18N, 6.08E KF946560
Accipiter nisus nisus ZMA58744 skin Laren 52.11N, 6.22E KF946561
Accipiter nisus nisus ZMA58745 skin Almere 52.22N, 5.13E KF946562
Accipiter nisus nisus ZMA58746 skin Venlo 51.21N, 6.11E KF946563
Acrocephalus palustris ZMA56679 skin Harderbroek reserve 52.22N, 5.35E KF946564
Acrocephalus palustris ZMA58811 skin Castricum 52.32N, 4.36E KF946565
Acrocephalus schoenobaenus ZMA58278 skin Almere 52.22N, 5.13E KF946566
Acrocephalus schoenobaenus ZMA58809 skin Almere 52.22N, 5.13E KF946567
Acrocephalus schoenobaenus ZMA58810 skin Castricum 52.32N, 4.36E KF946568
Acrocephalus schoenobaenus ZMA58862 skin Wassenaar 53.08N, 5.53E KF946569
Acrocephalus scirpaceus scirpaceus ZMA58277 skin Oostvaardersdijk 52.29N, 5.23E KF946570
Acrocephalus scirpaceus scirpaceus ZMA58725 skin Schermerhorn 52.36N, 4.54E KF946571
Acrocephalus scirpaceus scirpaceus ZMA58727 skin Lelystad 52.29N, 5.24E KF946572
Acrocephalus scirpaceus scirpaceus ZMA58728 skin Lelystad 52.29N, 5.24E KF946573
Acrocephalus scirpaceus scirpaceus ZMA58729 skin Castricum 52.32N, 4.36E KF946574
Acrocephalus scirpaceus scirpaceus ZMA58863 skin Lauwersmeer 53.22N, 6.14E KF946575
Acrocephalus scirpaceus scirpaceus ZMA58937 skin Lelystad 52.29N, 5.24E KF946576
Acrocephalus scirpaceus scirpaceus ZMA58938 skin Purmerend 52.28N, 4.58E KF946577
Aegithalos caudatus europaeus ZMA57353 skin Westenschouwen 51.41N, 3.42E KF946578
Aegithalos caudatus europaeus ZMA57354 skin Westenschouwen 51.41N, 3.42E KF946579
Aegithalos caudatus europaeus ZMA57356 skin Hilversum 52.13N, 5.09E KF946580
Aegithalos caudatus europaeus ZMA58804 skin Castricum 52.32N, 4.36E KF946581
Alcedo atthis ispida ZMA56216 skin Haelen 51.13N, 5.56E KF946582
Alcedo atthis ispida ZMA57341 skin Purmerland 52.28N, 4.55E KF946583
Alcedo atthis ispida ZMA57342 skin Alkmaar 52.38N, 4.44E KF946584
Alcedo atthis ispida ZMA57343 skin Utrecht 52.03N, 5.08E KF946585
Alcedo atthis ispida ZMA58869 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946586
Alle alle alle ZMA58842 skin Amsterdam 52.21N, 4.53E KF946587
Alle alle alle ZMA58917 skin Amsterdam 52.21N, 4.53E KF946588
Alle alle alle ZMA58918 skin Den Helder 52.55N, 4.46E KF946589
Anas acuta ZMA58228 skin Vlieland Island 53.15N, 4.59E KF946590
Anas strepera strepera ZMA58913 skin Driebond Polder 53.11N, 6.37E KF946591
Anthus spinoletta spinoletta ZMA58279 skin Lelystad 52.29N, 5.24E KF946592
Anthus spinoletta spinoletta ZMA64552 skin Castricum 52.32N, 4.36E KF946593
Anthus trivialis trivialis Tissue553 DNA sample Castricum 52.32N, 4.36E KF946594
Apus apus apus ZMA58717 skin Tegelen 51.19N, 6.09E KF946595
Ardea cinerea cinerea Tissue434 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946596
Ardea cinerea cinerea Tissue435 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946597
Asio flammeus flammeus ZMA58253 skin Texel Island 53.04N, 4.43E KF946598
Asio otus otus Tissue455 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946599
Asio otus otus ZMA58233 skin Purmerend 52.28N, 4.58E KF946600
Asio otus otus ZMA58234 skin Zutphen 52.07N, 6.12E KF946601
Athene noctua vidalii ZMA58493 skin Heerhugowaard 52.4N, 4.51E KF946602
Athene noctua vidalii ZMA58294 skin Blerick 51.21N, 6.08E KF946603
Bombycilla garrulus garrulus ZMA56300 skin Amsterdam 52.21N, 4.53E KF946604
Bombycilla garrulus garrulus ZMA56301 wings Texel Island 53.04N, 4.43E KF946605
Bombycilla garrulus garrulus ZMA58301 wings Hellendoorn 52.23N, 6.26E KF946606
Bombycilla japonica ZMA58302 skin Amsterdam 52.21N, 4.53E KF946607
Buteo buteo buteo Tissue461 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946608
Buteo buteo buteo ZMA58238 skin Wieringermeer 52.54N, 5.01E KF946609
Buteo buteo buteo ZMA58239 skin De Rips 51.32N, 5.48E KF946610
Buteo buteo buteo ZMA58781 wing Leeuwarden/Ljouwert 53.13N, 5.45E KF946611
Buteo buteo buteo ZMA58828 skin Wartena 52.12N, 4.3E KF946612
Buteo buteo buteo ZMA58920 wings Rolde 52.58N, 6.38E KF946613
Calidris alpina alpina ZMA58700 skin Schiermonnikoog Island 53.29N, 6.11E KF946614
Calonectris diomedea borealis ZMA57255 skin Lith 51.47N, 5.26E KF946615
Carduelis cannabina cannabina ZMA58911 skin Noordijk 52.08N, 6.34E KF946616
Carduelis carduelis ZMA58866 skin Schiermonnikoog Island 53.29N, 6.11E KF946617
Carduelis chloris chloris ZMA57337 skin Cadier en Keer 50.49N, 5.46E KF946618
Carduelis chloris chloris ZMA58947 skin Goor 52.14N, 6.34E KF946619
Carduelis flammea cabaret ZMA57248 skin Kennemerduinen 52.42N, 4.58E KF946620
Carduelis flammea cabaret ZMA58283 skin Westenschouwen 51.41N, 3.42E KF946621
Carduelis flammea flammea ZMA57251 skin Kennemerduinen 52.42N, 4.58E KF946622
Carduelis flammea flammea ZMA64564 skin Castricum 52.32N, 4.36E KF946623
Carduelis flavirostris ZMA57253 skin Castricum 52.32N, 4.36E KF946624
Carduelis flavirostris ZMA57254 skin Castricum 52.32N, 4.36E KF946625
Carduelis spinus ZMA55904 skin Nijverdal 52.22N, 6.28E KF946626
Carduelis spinus ZMA57256 skin Westenschouwen 51.41N, 3.42E KF946627
Carduelis spinus ZMA58286 skin Hellendoorn 52.23N, 6.26E KF946628
Certhia brachydactyla megarhyncha ZMA57322 skin Hellendoorn 52.23N, 6.26E KF946629
Certhia brachydactyla megarhyncha ZMA57323 skin Lekkerkerk 51.53N, 4.41E KF946630
Certhia brachydactyla megarhyncha ZMA57325 skin Wageningen 51.58N, 5.38E KF946631
Certhia brachydactyla megarhyncha ZMA57326 skin Zeist 52.05N, 5.16E KF946632
Certhia brachydactyla megarhyncha ZMA57327 skin Heiloo 52.36N, 4.44E KF946633
Certhia brachydactyla megarhyncha ZMA58805 skin Castricum 52.32N, 4.36E KF946634
Certhia brachydactyla megarhyncha ZMA58949 skin Lekkerkerk 51.53N, 4.41E KF946635
Certhia brachydactyla megarhyncha ZMA64563 skin Castricum 52.32N, 4.36E KF946636
Charadrius hiaticula Tissue452 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946637
Circus aeruginosus aeruginosus ZMA58780 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946638
Circus aeruginosus aeruginosus ZMA58826 skin Eibergen 52.06N, 6.37E KF946639
Circus aeruginosus aeruginosus ZMA58874 wings Zuid-Flevoland 52.26N, 5.16E KF946640
Coccothraustes coccothraustes ZMA56212 skin Laag Keppel 51.59N, 6.13E KF946641
Corvus corax corax ZMA57144 skin Appelscha/Appelskea 52.55N, 5.2E KF946642
Coturnix coturnix coturnix ZMA58775 skin Deventer 52.15N, 6.11E KF946643
Coturnix coturnix coturnix ZMA58776 skin Het Bildt 53.17N, 5.4E KF946644
Cuculus canorus canorus ZMA56681 skin Bergen 52.4N, 4.41E KF946645
Cuculus canorus canorus ZMA64549 skin Alkmaar 52.38N, 4.44E KF946646
Delichon urbicum ZMA56215 skin Sea KF946647
Delichon urbicum urbicum ZMA55919 skin Nieuwegein 52.01N, 5.05E KF946648
Delichon urbicum urbicum ZMA58300 wings Lage Zwaluwe 51.42N, 4.42E KF946649
Delichon urbicum urbicum ZMA58870 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946650
Dendrocopos major pinetorum ZMA58803 skin Oudkerk/Aldtsjerk 53.15N, 5.53E KF946651
Dryocopus martius martius ZMA58766 skin Tegelen 51.19N, 6.09E KF946652
Emberiza citrinella citrinella ZMA57257 skin Westenschouwen 51.41N, 3.42E KF946653
Emberiza melanocephala ZMA56996 skin Bovenkerk 52.17N, 4.49E KF946654
Emberiza pusilla ZMA58859 skin Schiermonnikoog Island 53.29N, 6.11E KF946655
Emberiza pusilla ZMA58860 skin Vlieland Island 53.15N, 4.59E KF946656
Emberiza schoeniclus schoeniclus ZMA58857 skin Noordpolderzijl 53.25N, 6.34E KF946657
Emberiza schoeniclus schoeniclus ZMA58858 skin Oostvaardersdijk 52.29N, 5.23E KF946658
Erithacus rubecula rubecula Tissue436 DNA sample Castricum 52.32N, 4.36E KF946659
Erithacus rubecula rubecula Tissue437 DNA sample Castricum 52.32N, 4.36E KF946660
Erithacus rubecula rubecula ZMA58274 skin Bloemendaal 52.24N, 4.33E KF946661
Erithacus rubecula rubecula ZMA58740 skin Doldersum 52.52N, 6.17E KF946662
Falco columbarius aesalon ZMA58840 skin Texel Island 53.04N, 4.43E KF946663
Falco columbarius aesalon ZMA60127 skin Spaarndam 52.24N, 4.41E KF946664
Falco peregrinus peregrinus ZMA58872 skin Haarlem 52.23N, 4.37E KF946665
Falco subbuteo subbuteo ZMA56231 skin Zundert 51.28N, 4.38E KF946666
Falco subbuteo subbuteo ZMA56232 skin Heerhugowaard 52.4N, 4.51E KF946667
Falco subbuteo subbuteo ZMA58241 skin Hoogland 52.1N, 5.21E KF946668
Falco subbuteo subbuteo ZMA58242 skin Texel Island 53.04N, 4.43E KF946669
Falco subbuteo subbuteo ZMA58841 skin Amsterdam 52.21N, 4.53E KF946670
Falco tinnunculus tinnunculus Tissue456 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946671
Falco tinnunculus tinnunculus ZMA58296 skin Zaandam 52.25N, 4.49E KF946672
Falco tinnunculus tinnunculus ZMA58752 skin Maasbree 51.21N, 6.03E KF946673
Falco tinnunculus tinnunculus ZMA58754 skin Boekend 51.22N, 6.06E KF946674
Falco tinnunculus tinnunculus ZMA58774 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946675
Falco tinnunculus tinnunculus ZMA58837 skin Westzaan 52.26N, 4.46E KF946676
Falco tinnunculus tinnunculus ZMA58838 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946677
Falco tinnunculus tinnunculus ZMA58839 wings Reutum 52.23N, 6.5E KF946678
Falco vespertinus ZMA58773 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946679
Ficedula hypoleuca muscipeta ZMA55913 skin Otterlo 52.04N, 5.5E KF946680
Ficedula hypoleuca muscipeta ZMA57239 skin Markelo 52.14N, 6.3E KF946681
Ficedula hypoleuca muscipeta ZMA57320 skin Garderen 52.12N, 5.43E KF946682
Ficedula hypoleuca ZMA58865 skin Eemshaven 53.26N, 6.52E KF946683
Fratercula arctica grabae ZMA56226 skin Texel Island 53.04N, 4.43E KF946684
Fratercula arctica grabae ZMA58226 skin Texel Island 53.04N, 4.43E KF946685
Fratercula arctica grabae ZMA58227 skin Hondsbossche Zeewering 52.44N, 4.38E KF946686
Fringilla coelebs coelebs ZMA58948 skin Goor 52.14N, 6.34E KF946687
Fringilla montifringilla Tissue449 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946688
Fulmarus glacialis auduboni ZMA56235 wings Hondsbossche Zeewering 52.44N, 4.38E KF946689
Fulmarus glacialis glacialis ZMA60119 skin Neeltje Jans 51.37N, 3.41E KF946690
Fulmarus glacialis glacialis ZMA60120 skin Texel Island 53.04N, 4.43E KF946691
Fulmarus glacialis glacialis ZMA60121 skin Hondsbossche Zeewering 52.44N, 4.38E KF946692
Fulmarus glacialis glacialis ZMA60123 skin Ameland Island 53.27N, 5.39E KF946693
Fulmarus glacialis glacialis ZMA60124 skin Ameland Island 53.27N, 5.39E KF946694
Fulmarus glacialis glacialis ZMA60125 skin Hondsbossche Zeewering 52.44N, 4.38E KF946695
Fulmarus glacialis glacialis ZMA60126 skin Petten 52.46N, 4.38E KF946696
Fulmarus glacialis ZMA58737 skin Vlieland Island 53.15N, 4.59E KF946697
Gallinula chloropus chloropus Tissue105 DNA sample Wijde Wormer 52.28N, 4.53E KF946698
Gallinula chloropus chloropus Tissue110 DNA sample Wijde Wormer 52.28N, 4.53E KF946699
Garrulus glandarius glandarius ZMA58306 wings Amsterdam 52.21N, 4.53E KF946700
Gavia immer Tissue214 DNA sample Bergen aan Zee 52.39N, 4.37E KF946701
Haematopus ostralegus ostralegus Tissue458 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946702
Haematopus ostralegus ostralegus Tissue459 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946703
Hirundo rustica rustica Tissue450 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946704
Hirundo rustica rustica Tissue451 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946705
Hirundo rustica rustica ZMA56214 skin Amstelveen 52.18N, 4.53E KF946706
Hirundo rustica rustica ZMA58289 skin Appelscha/Appelskea 52.55N, 5.2E KF946707
Hirundo rustica rustica ZMA58290 skin Appelscha/Appelskea 52.55N, 5.2E KF946708
Hirundo rustica rustica ZMA58696 skin Rijswijk 51.57N, 5.21E KF946709
Hirundo rustica rustica ZMA58802 skin Noordbergum/Noardburgum 53.13N, 6E KF946710
Jynx torquilla torquilla ZMA56213 skin Aarle-Rixtel 51.3N, 5.39E KF946711
Jynx torquilla torquilla ZMA57330 skin Limmen 52.34N, 4.41E KF946712
Jynx torquilla torquilla ZMA58303 wings Belfeld 51.18N, 6.08E KF946713
Jynx torquilla torquilla ZMA58873 skin Wilnis 52.11N, 4.54E KF946714
Larus argentatus argenteus ZMA58921 wings Eemshaven 53.26N, 6.52E KF946715
Larus argentatus Tissue433 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946716
Larus cachinnans ZMA64547 skin Vlieland Island 53.15N, 4.59E KF946717
Larus fuscus graelsii Tissue432 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946718
Larus fuscus intermedius Tissue327 DNA-sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946719
Larus fuscus intermedius ZMA55932 skin Neeltje Jans 51.37N, 3.41E KF946720
Larus fuscus intermedius ZMA56230 skin Europoort 51.56N, 4.05E KF946721
Larus fuscus intermedius ZMA58834 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946722
Larus glaucoides glaucoides ZMA58836 wings Texel Island 53.04N, 4.43E KF946723
Larus hyperboreus ZMA56221 skin Texel Island 53.04N, 4.43E KF946724
Larus melanocephalus ZMA57226 skin Wijdenes 52.37N, 5.1E KF946725
Larus michahellis michahellis ZMA58835 skin Afsluitdijk 52.57N, 5.04E KF946726
Limosa lapponica lapponica ZMA58202 skin Schiermonnikoog Island 53.29N, 6.11E KF946727
Limosa lapponica lapponica ZMA58203 skin Schiermonnikoog Island 53.29N, 6.11E KF946728
Limosa lapponica taymyrensis ZMA58204 skin Paesens 53.24N, 6.06E KF946729
Limosa lapponica taymyrensis ZMA58205 skin Paesens 53.24N, 6.06E KF946730
Limosa lapponica taymyrensis ZMA58206 skin Paesens 53.24N, 6.06E KF946731
Limosa lapponica taymyrensis ZMA58207 skin Paesens 53.24N, 6.06E KF946732
Limosa lapponica taymyrensis ZMA58208 skin Paesens 53.24N, 6.06E KF946733
Limosa lapponica taymyrensis ZMA58782 wings Castricum 52.32N, 4.36E KF946734
Limosa lapponica taymyrensis ZMA58783 wings Castricum 52.32N, 4.36E KF946735
Limosa limosa limosa Tissue457 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946736
Limosa limosa limosa ZMA57227 skin Holysloot 52.24N, 5.01E KF946737
Limosa limosa limosa ZMA58229 skin Waterland 52.07N, 4.19E KF946738
Limosa limosa limosa ZMA58230 skin Edam 52.32N, 5.01E KF946739
Limosa limosa limosa ZMA58231 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946740
Limosa limosa limosa ZMA58232 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946741
Locustella luscinioides luscinioides ZMA64557 skin Castricum 52.32N, 4.36E KF946742
Locustella naevia naevia ZMA56675 skin Almere 52.22N, 5.13E KF946743
Locustella naevia naevia ZMA56678 skin Almere 52.22N, 5.13E KF946744
Locustella naevia naevia ZMA57235 skin Westenschouwen 51.41N, 3.42E KF946745
Locustella naevia naevia ZMA58812 skin Castricum 52.32N, 4.36E KF946746
Locustella naevia naevia ZMA58936 skin Hondsbossche Zeewering 52.44N, 4.38E KF946747
Locustella naevia naevia ZMA60132 skin Kennemerduinen 52.42N, 4.58E KF946748
Locustella naevia naevia ZMA60133 skin Kennemerduinen 52.42N, 4.58E KF946749
Locustella naevia naevia ZMA64556 skin Castricum 52.32N, 4.36E KF946750
Loxia curvirostra curvirostra ZMA57246 skin Eesveen 52.5N, 6.06E KF946751
Loxia curvirostra curvirostra ZMA57247 skin Leersum 52.01N, 5.25E KF946752
Luscinia megarhynchos megarhynchos ZMA58798 skin Amsterdam 52.21N, 4.53E KF946753
Lymnocryptes minimus ZMA55930 skin Heerhugowaard 52.4N, 4.51E KF946754
Lymnocryptes minimus ZMA58293 skin Uitgeest 52.31N, 4.42E KF946755
Milvus milvus milvus ZMA58307 wings Grolloo 52.55N, 6.39E KF946756
Milvus milvus milvus ZMA58824 wings Susteren 51.03N, 5.52E KF946757
Milvus milvus milvus ZMA58825 skin Heurne 51.54N, 6.34E KF946758
Motacilla alba yarrellii ZMA58946 skin Haastrecht 51.59N, 4.46E KF946759
Motacilla cinerea cinerea ZMA57241 skin Westenschouwen 51.41N, 3.42E KF946760
Motacilla cinerea cinerea ZMA58266 skin Westenschouwen 51.41N, 3.42E KF946761
Motacilla cinerea cinerea ZMA58267 skin Westenschouwen 51.41N, 3.42E KF946762
Motacilla cinerea cinerea ZMA58945 skin Westenschouwen 51.41N, 3.42E KF946763
Muscicapa striata striata ZMA57336 skin Ilpendam 52.27N, 4.56E KF946764
Numenius arquata arquata Tissue431 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946765
Numenius arquata arquata ZMA58765 skin Schiermonnikoog Island 53.29N, 6.11E KF946766
Numenius arquata arquata ZMA58829 skin Heemskerk 52.3N, 4.36E KF946767
Oenanthe oenanthe leucorhoa ZMA58868 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946768
Oenanthe oenanthe oenanthe ZMA58275 skin Hondsbossche Zeewering 52.44N, 4.38E KF946769
Oenanthe oenanthe oenanthe ZMA58800 skin Noordbergum/Noardburgum 53.13N, 6E KF946770
Oriolus oriolus oriolus ZMA58288 skin Heteren 51.57N, 5.45E KF946771
Oriolus oriolus oriolus ZMA58305 wings Zundert 51.28N, 4.38E KF946772
Pandion haliaetus haliaetus ZMA58823 wing Vlieland Island 53.15N, 4.59E KF946773
Panurus biarmicus biarmicus ZMA57318 skin Oostvaardersdijk 52.29N, 5.23E KF946774
Panurus biarmicus biarmicus ZMA58262 skin Lelystad 52.29N, 5.24E KF946775
Panurus biarmicus biarmicus ZMA58263 skin Lelystad 52.29N, 5.24E KF946776
Panurus biarmicus biarmicus ZMA58264 skin Lelystad 52.29N, 5.24E KF946777
Panurus biarmicus biarmicus ZMA58265 skin Lelystad 52.29N, 5.24E KF946778
Panurus biarmicus biarmicus ZMA58854 skin Oostvaardersdijk 52.29N, 5.23E KF946779
Panurus biarmicus biarmicus ZMA58855 skin Oostvaardersdijk 52.29N, 5.23E KF946780
Panurus biarmicus biarmicus ZMA58856 skin Oostvaardersdijk 52.29N, 5.23E KF946781
Parus ater ater Tissue555 DNA sample Castricum 52.32N, 4.36E KF946782
Parus ater ater ZMA56219 skin Huizen 52.17N, 5.14E KF946783
Parus ater ater ZMA57242 skin Arnhem 51.58N, 5.53E KF946784
Parus ater ater ZMA57243 skin Amsterdam 52.21N, 4.53E KF946785
Parus ater ater ZMA58867 skin Amsterdam 52.21N, 4.53E KF946786
Parus ater ater ZMA64562 skin Castricum 52.32N, 4.36E KF946787
Parus caeruleus caeruleus Tissue438 DNA sample Castricum 52.32N, 4.36E KF946788
Parus caeruleus caeruleus Tissue439 DNA sample Castricum 52.32N, 4.36E KF946789
Parus caeruleus caeruleus Tissue440 DNA sample Castricum 52.32N, 4.36E KF946790
Parus caeruleus caeruleus ZMA58944 wing Leeuwarden/Ljouwert 53.13N, 5.45E KF946791
Parus cristatus mitratus ZMA56677 skin Nijverdal 52.22N, 6.28E KF946792
Parus cristatus mitratus ZMA57245 skin Hoog Buurlo 52.1N, 5.5E KF946793
Parus major major ZMA58796 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946794
Parus major major ZMA58797 skin Castricum 52.32N, 4.36E KF946795
Parus palustris palustris ZMA57244 skin Castricum 52.32N, 4.36E KF946796
Parus palustris palustris ZMA64561 skin Goor 52.14N, 6.34E KF946797
Passer domesticus domesticus ZMA58799 skin Cadier en Keer 50.49N, 5.46E KF946798
Passer domesticus domesticus ZMA60138 skin Lekkerkerk 51.53N, 4.41E KF946799
Passer montanus montanus ZMA58851 skin Zuidhorn 53.14N, 6.23E KF946800
Passer montanus montanus ZMA58852 skin Zuidhorn 53.14N, 6.23E KF946801
Passer montanus montanus ZMA58853 skin Zuidhorn 53.14N, 6.23E KF946802
Passer montanus montanus ZMA58950 skin Zuidhorn 53.14N, 6.23E KF946803
Perdix perdix perdix ZMA58738 skin Texel Island 53.04N, 4.43E KF946804
Perdix perdix perdix ZMA58739 skin Petten 52.46N, 4.38E KF946805
Pernis apivorus ZMA58827 wings Vledder 52.53N, 6.13E KF946806
Phalacrocorax aristotelis aristotelis ZMA58224 skin Wijk aan Zee 52.28N, 4.34E KF946807
Philomachus pugnax ZMA56680 skin Graftermeer polder 52.33N, 4.48E KF946808
Philomachus pugnax ZMA58250 skin Lelystad 52.29N, 5.24E KF946809
Phoenicopterus chilensis ZMA56683 skin Ransdorp 52.23N, 4.59E KF946810
Phoenicurus phoenicurus phoenicurus ZMA55914 skin Westenschouwen 51.41N, 3.42E KF946811
Phylloscopus collybita collybita ZMA55917 skin Nijverdal 52.22N, 6.28E KF946812
Phylloscopus collybita collybita ZMA55918 wings Leveroy 51.14N, 5.5E KF946813
Phylloscopus collybita collybita ZMA56217 skin Hoogland 52.1N, 5.21E KF946814
Phylloscopus trochilus ZMA58284 skin Lelystad 52.29N, 5.24E KF946815
Phylloscopus trochilus ZMA58710 skin Almere 52.22N, 5.13E KF946816
Phylloscopus trochilus ZMA58713 skin Egmond aan Zee 52.37N, 4.38E KF946817
Phylloscopus trochilus ZMA58714 skin Lekkerkerk 51.53N, 4.41E KF946818
Phylloscopus trochilus ZMA58715 skin Texel Island 53.04N, 4.43E KF946819
Phylloscopus trochilus ZMA58716 skin Castricum 52.32N, 4.36E KF946820
Phylloscopus trochilus ZMA58861 skin Castricum 52.32N, 4.36E KF946821
Phylloscopus trochilus ZMA58933 wings Goor 52.14N, 6.34E KF946822
Phylloscopus trochilus ZMA58934 skin Eemshaven 53.26N, 6.52E KF946823
Picus viridis viridis ZMA58718 skin Breda 51.33N, 4.46E KF946824
Picus viridis viridis ZMA58719 skin Haaksbergen 52.08N, 6.4E KF946825
Picus viridis viridis ZMA58720 skin Alkmaar 52.38N, 4.44E KF946826
Picus viridis viridis ZMA58721 skin Roggel 51.17N, 5.54E KF946827
Picus viridis viridis ZMA58722 skin Bergen 52.4N, 4.41E KF946828
Plectrophenax nivalis insulae ZMA56672 skin Castricum 52.32N, 4.36E KF946829
Pluvialis apricaria ZMA58213 skin Winsum 53.09N, 5.38E KF946830
Pluvialis apricaria ZMA58214 skin Winsum 53.09N, 5.38E KF946831
Pluvialis apricaria ZMA58215 skin Dronrijp/Dronryp 53.11N, 5.4E KF946832
Pluvialis squatarola squatarola ZMA56224 skin Schiermonnikoog Island 53.29N, 6.11E KF946833
Pluvialis squatarola squatarola ZMA56225 skin Schiermonnikoog Island 53.29N, 6.11E KF946834
Puffinus gravis ZMA64542 skin Sexbierum/Seisbierrum 53.14N, 5.28E KF946835
Pyrrhula pyrrhula europoea ZMA56673 skin Castricum 52.32N, 4.36E KF946836
Pyrrhula pyrrhula europoea ZMA58793 skin Castricum 52.32N, 4.36E KF946837
Pyrrhula pyrrhula europoea ZMA58794 skin Castricum 52.32N, 4.36E KF946838
Pyrrhula pyrrhula europoea ZMA58795 skin Castricum 52.32N, 4.36E KF946839
Pyrrhula pyrrhula europoea ZMA60137 wings Kennemerduinen 52.42N, 4.58E KF946840
Rallus aquaticus aquaticus ZMA58763 skin Lauwersmeer 53.22N, 6.14E KF946841
Recurvirostra avosetta ZMA58216 skin Petten 52.46N, 4.38E KF946842
Regulus ignicapilla ignicapilla Tissue448 DNA sample Castricum 52.32N, 4.36E KF946843
Regulus ignicapilla ignicapilla ZMA57360 skin Zundert 51.28N, 4.38E KF946844
Regulus ignicapilla ignicapilla ZMA58807 skin Castricum 52.32N, 4.36E KF946845
Regulus ignicapilla ignicapilla ZMA58808 skin Castricum 52.32N, 4.36E KF946846
Regulus regulus regulus ZMA64560 skin Castricum 52.32N, 4.36E KF946847
Riparia riparia riparia ZMA58871 skin Zeewolde 52.21N, 5.34E KF946848
Saxicola rubetra ZMA60131 skin Kennemerduinen 52.42N, 4.58E KF946849
Saxicola rubetra ZMA64555 skin Castricum 52.32N, 4.36E KF946850
Somateria mollissima mollissima ZMA58912 skin Lauwersoog 53.24N, 6.12E KF946851
Stercorarius longicaudus ZMA58779 wings Afsluitdijk 52.57N, 5.04E KF946852
Stercorarius longicaudus ZMA64546 skin Petten 52.46N, 4.38E KF946853
Stercorarius parasiticus ZMA56229 skin Vlieland Island 53.15N, 4.59E KF946854
Stercorarius parasiticus ZMA56684 wings Terschelling Island 53.26N, 5.29E KF946855
Stercorarius parasiticus ZMA58778 skin Den Oever 52.56N, 5.02E KF946856
Stercorarius parasiticus ZMA58830 skin Den Helder 52.55N, 4.46E KF946857
Stercorarius pomarinus Tissue211 DNA sample Texel Island 53.04N, 4.43E KF946858
Stercorarius pomarinus ZMA55929 skin Hondsbossche Zeewering 52.44N, 4.38E KF946859
Stercorarius skua skua ZMA64545 skin Egmond aan Zee 52.37N, 4.38E KF946860
Sterna albifrons albifrons ZMA58832 skin Schiermonnikoog Island 53.29N, 6.11E KF946861
Sterna hirundo hirundo ZMA58915 skin Eemshaven 53.26N, 6.52E KF946862
Sterna paradisaea ZMA58831 skin Amsterdam 52.21N, 4.53E KF946863
Streptopelia decaocto decaocto ZMA58923 wing Hoogkerk 53.12N, 6.3E KF946864
Streptopelia turtur turtur ZMA58757 skin Texel Island 53.04N, 4.43E KF946865
Sylvia atricapilla atricapilla Tissue441 DNA sample Castricum 52.32N, 4.36E KF946866
Sylvia atricapilla atricapilla Tissue442 DNA sample Castricum 52.32N, 4.36E KF946867
Sylvia atricapilla atricapilla ZMA58268 skin Bloemendaal 52.24N, 4.33E KF946868
Sylvia atricapilla atricapilla ZMA58269 skin Bloemendaal 52.24N, 4.33E KF946869
Sylvia atricapilla atricapilla ZMA58270 skin Bloemendaal 52.24N, 4.33E KF946870
Sylvia atricapilla atricapilla ZMA58759 skin Cadier en Keer 50.49N, 5.46E KF946871
Sylvia borin borin Tissue443 DNA sample Castricum 52.32N, 4.36E KF946872
Sylvia borin borin ZMA58758 skin Groningen 53.14N, 6.35E KF946873
Sylvia borin borin ZMA58761 skin Almere 52.22N, 5.13E KF946874
Sylvia borin borin ZMA58762 skin Purmerend 52.28N, 4.58E KF946875
Sylvia communis communis ZMA55924 wing Asten 51.21N, 5.48E KF946876
Sylvia communis communis ZMA57335 skin Almere 52.22N, 5.13E KF946877
Sylvia communis communis ZMA58280 skin Breda 51.33N, 4.46E KF946878
Sylvia communis communis ZMA58939 skin Castricum 52.32N, 4.36E KF946879
Sylvia communis communis ZMA58940 skin Bloemendaal 52.24N, 4.33E KF946880
Sylvia curruca blythi ZMA58941 skin Houten 52.01N, 5.1E KF946881
Sylvia curruca blythi ZMA57237 skin Rotterdam 51.57N, 4.32E KF946882
Sylvia curruca curruca ZMA55905 skin Westenschouwen 51.41N, 3.42E KF946883
Sylvia curruca curruca ZMA55906 skin Amsterdam 52.21N, 4.53E KF946884
Sylvia curruca curruca ZMA57328 skin Almere 52.22N, 5.13E KF946885
Sylvia curruca curruca ZMA57329 skin Texel Island 53.04N, 4.43E KF946886
Sylvia curruca curruca ZMA58282 skin Zeewolde 52.21N, 5.34E KF946887
Sylvia curruca curruca ZMA58806 skin Leeuwarden/Ljouwert 53.13N, 5.45E KF946888
Sylvia curruca curruca ZMA58864 skin Eemshaven 53.26N, 6.52E KF946889
Sylvia curruca curruca ZMA58942 skin Bloemendaal 52.24N, 4.33E KF946890
Sylvia nisoria nisoria ZMA58273 skin Westenschouwen 51.41N, 3.42E KF946891
Tringa ochropus ZMA64544 skin Castricum 52.32N, 4.36E KF946892
Tringa totanus totanus ZMA58212 skin Schiermonnikoog Island 53.29N, 6.11E KF946893
Troglodytes troglodytes troglodytes Tissue447 DNA sample Castricum 52.32N, 4.36E KF946894
Troglodytes troglodytes troglodytes ZMA58281 skin Bloemendaal 52.24N, 4.33E KF946895
Turdus iliacus iliacus ZMA58287 skin Bloemendaal 52.24N, 4.33E KF946896
Turdus merula merula ZMA56669 skin Haarlem 52.23N, 4.37E KF946897
Turdus merula merula ZMA56670 skin Bergen 52.4N, 4.41E KF946898
Turdus merula merula ZMA57345 skin Zwolle 52.3N, 6.06E KF946899
Turdus merula merula ZMA58731 skin Alkmaar 52.38N, 4.44E KF946900
Turdus merula merula ZMA58732 skin Maasbree 51.21N, 6.03E KF946901
Turdus merula merula ZMA58733 skin Maasbree 51.21N, 6.03E KF946902
Turdus merula merula ZMA58734 skin Steijl 51.2N, 6.07E KF946903
Turdus merula merula ZMA58736 skin Schiermonnikoog Island 53.29N, 6.11E KF946904
Turdus philomelos philomelos Tissue453 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946905
Turdus philomelos philomelos Tissue454 DNA sample Leeuwarden/Ljouwert 53.13N, 5.45E KF946906
Turdus torquatus torquatus ZMA56222 skin Texel Island 53.04N, 4.43E KF946907
Turdus torquatus torquatus ZMA56671 skin Castricum 52.32N, 4.36E KF946908
Turdus torquatus torquatus ZMA58693 skin Apeldoorn 52.1N, 5.58E KF946909
Turdus torquatus torquatus ZMA58694 skin Vlieland Island 53.15N, 4.59E KF946910
Turdus torquatus torquatus ZMA58695 skin Zuilichem 51.48N, 5.07E KF946911
Turdus torquatus torquatus ZMA64554 skin Texel Island 53.04N, 4.43E KF946912
Turdus viscivorus viscivorus ZMA60130 skin Kennemerduinen 52.42N, 4.58E KF946913
Tyto alba alba ZMA56233 skin Burgerbrug 52.45N, 4.42E KF946914
Tyto alba guttata ZMA56682 skin Wierden 52.22N, 6.34E KF946915
Tyto alba guttata ZMA58235 skin Texel Island 53.04N, 4.43E KF946916
Tyto alba guttata ZMA58236 skin Ouderkerk aan de Amstel 52.17N, 4.56E KF946917
Tyto alba guttata ZMA58843 skin Westzaan 52.26N, 4.46E KF946918
Tyto alba guttata ZMA58844 skin Zaanstreek 52.28N, 4.44E KF946919
Tyto alba guttata ZMA58845 skin Roodkerk/Readtsjerk 53.15N, 5.55E KF946920
Tyto alba guttata ZMA58846 skin Garijp/Garyp 53.1N, 5.57E KF946921
Tyto alba guttata ZMA58847 skin Middenmeer 52.48N, 4.59E KF946922
Tyto alba guttata ZMA58848 wings Leeuwarden/Ljouwert 53.13N, 5.45E KF946923
Tyto alba guttata ZMA58919 skin Texel Island 53.04N, 4.43E KF946924
Tyto alba guttata ZMA64550 skin Purmerend 52.28N, 4.58E KF946925
Tyto alba guttata ZMA64551 skin Goor 52.14N, 6.34E KF946926
Uria aalge albionis ZMA56227 skin Amsterdam 52.21N, 4.53E KF946927
Uria aalge albionis ZMA58218 skin Vlieland Island 53.15N, 4.59E KF946928
Uria aalge albionis ZMA58916 skin Petten 52.46N, 4.38E KF946929
Vanellus vanellus ZMA58784 wing Valkenburg 52.09N, 4.25E KF946930
Vanellus vanellus ZMA58785 wing Valkenburg 52.09N, 4.25E KF946931
Vanellus vanellus ZMA58786 wing Valkenburg 52.09N, 4.25E KF946932
Vanellus vanellus ZMA58787 wing Valkenburg 52.09N, 4.25E KF946933
Vanellus vanellus ZMA58788 wing Valkenburg 52.09N, 4.25E KF946934
Vanellus vanellus ZMA58789 wing Valkenburg 52.09N, 4.25E KF946935
Vanellus vanellus ZMA58790 wing Valkenburg 52.09N, 4.25E KF946936
Vanellus vanellus ZMA58791 wing Valkenburg 52.09N, 4.25E KF946937

Supplementary table 2.

Bird species (gulls Larus and skuas Stercorarius) from the Netherlands with low (< 1.1%) K2P-mean intraspecific distances.

Collection number and species Collection number and species Distance (%)
#ZMA58835 Larus michahellis #Tissue327 Larus fuscus 0
#ZMA58835 Larus michahellis #Tissue432 Larus fuscus 0
#ZMA58835 Larus michahellis #ZMA55932 Larus fuscus 0
#ZMA58835 Larus michahellis #ZMA56230 Larus fuscus 0
#ZMA64547 Larus cachinnans #Tissue327 Larus fuscus 0
#ZMA64547 Larus cachinnans #Tissue432 Larus fuscus 0
#ZMA64547 Larus cachinnans #ZMA55932 Larus fuscus 0
#ZMA64547 Larus cachinnans #ZMA56230 Larus fuscus 0
#ZMA64547 Larus cachinnans #ZMA58835 Larus michahellis 0
#ZMA58921 Larus argentatus #ZMA55932 Larus fuscus 0.14
#ZMA58921 Larus argentatus #ZMA58835 Larus michahellis 0.14
#ZMA58921 Larus argentatus #Tissue432 Larus fuscus 0.15
#ZMA58921 Larus argentatus #ZMA56230 Larus fuscus 0.15
#ZMA64547 Larus cachinnans #ZMA58834 Larus fuscus 0.15
#ZMA64547 Larus cachinnans #ZMA58921 Larus argentatus 0.15
#ZMA58921 Larus argentatus #Tissue327 Larus fuscus 0.16
#ZMA55932 Larus fuscus #Tissue433 Larus argentatus 0.29
#ZMA58835 Larus michahellis #Tissue433 Larus argentatus 0.29
#Tissue433 Larus argentatus #Tissue432 Larus fuscus 0.30
#ZMA56230 Larus fusca #Tissue433 Larus argentatus 0.30
#ZMA64545 Stercorarius skua #ZMA55929 Stercorarius pomarinus 0.30
#ZMA58836 Larus glaucoides #Tissue432 Larus fuscus 0.31
#ZMA58836 Larus glaucoides #ZMA55932 Larus fuscus 0.31
#ZMA58836 Larus glaucoides #ZMA56230 Larus fuscus 0.31
#ZMA58836 Larus glaucoides #ZMA58835 Larus michahellis 0.31
#ZMA64547 Larus cachinnans #Tissue433 Larus argentatus 0.31
#ZMA64547 Larus cachinnans #ZMA58836 Larus glaucoides 0.31
#Tissue433 Larus argentatus #Tissue327 Larus fuscus 0.32
#ZMA58836 Larus glaucoides #Tissue327 Larus fuscus 0.32
#ZMA64545 Stercorarius skua #Tissue211 Stercorarius pomarinus 0.43
#ZMA58835 Larus michahellis #ZMA58834 Larus fuscus 0.45
#ZMA58836 Larus glaucoides #ZMA58834 Larus fuscus 0.46
#ZMA58921 Larus argentatus #ZMA58836 Larus glaucoides 0.46
#ZMA56221 Larus hyperboreus #ZMA55932 Larus fuscus 0.58
#ZMA58835 Larus michahellis #ZMA56221 Larus hyperboreus 0.58
#ZMA56221 Larus hyperboreus #Tissue432 Larus fuscus 0.60
#ZMA56230 Larus fuscus #ZMA56221 Larus hyperboreus 0.60
#ZMA58921 Larus argentatus #ZMA58834 Larus fuscus 0.60
#ZMA64547 Larus cachinnans #ZMA56221 Larus hyperboreus 0.61
#ZMA58836 Larus glaucoides #Tissue433 Larus argentatus 0.62
#ZMA56221 Larus hyperboreus #Tissue327 Larus fuscus 0.64
#ZMA58921 Larus argentatus #ZMA56221 Larus hyperboreus 0.73
#ZMA58834 Larus fuscus #Tissue433 Larus argentatus 0.75
#ZMA56221 Larus hyperboreus #Tissue433 Larus argentatus 0.87
#ZMA58836 Larus glaucoides #ZMA56221 Larus hyperboreus 0.93
#ZMA58834 Larus fuscus #ZMA56221 Larus hyperboreus 1.06

References

  1. Aliabadian M, Kaboli M, Nijman V, Vences M. (2009) Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4: e4119. doi: 10.1371/journal.pone.0004119 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker AJ, Tavares ES, Elbourne RF. (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. Molecular Ecology Resources 2009, 9: 257–267. doi: 10.1111/j.1755-0998.2009.02650.x [DOI] [PubMed] [Google Scholar]
  3. Bucklin A, Steinke D, Blanco-Bercial L. (2011) DNA barcoding of marine metazoa. Annual Review of Marine Science 3: 471-508. doi: 10.1146/annurev-marine-120308-080950 [DOI] [PubMed] [Google Scholar]
  4. Clement X, Posada D, Crandall K. (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659. doi: 10.1046/j.1365-294x.2000.01020.x [DOI] [PubMed] [Google Scholar]
  5. Dalton DL, Kotze A. (2011) DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Science International 207: e51–e54. doi: 10.1016/j.forsciint.2010.12.017 [DOI] [PubMed] [Google Scholar]
  6. Dickinson EC. (2003) The Howard & Moore Complete Checklist of the Birds of the World, 3rd Edition Christopher Helm, London. [Google Scholar]
  7. Ebach MC, Carvalho MRD. (2010) Anti-intellectualism in the DNA barcoding enterprise. Zoologia (Curitiba) 27: 165-178. doi: 10.1590/S1984-46702010000200003 [DOI] [Google Scholar]
  8. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. doi: 10.2307/2408678 [DOI] [PubMed] [Google Scholar]
  9. Förschler MI, Khoury F, Bairlein F, Aliabadian M. (2010) Phylogenetic analyses of the Mourning Wheatear complex. Molecular Phylogenetics and Evolution 56: 758-767. doi: 10.1016/j.ympev.2010.03.022 [DOI] [PubMed] [Google Scholar]
  10. Grant RA, Griffiths HJ, Steinke D, Wadley V, Linse K. (2011) Antarctic DNA barcoding, a drop in the ocean? Polar Biology 34: 775–780. doi: 10.1007/s00300-010-0932-7 [DOI] [Google Scholar]
  11. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the USA 103: 968-971. doi: 10.1073/pnas.0510466103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hausmann A, Haszprunar G, Hebert PD. (2011) DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): successes, surprises, and questions. PLoS ONE 6: e17134. doi: 10.1371/journal.pone.0017134 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hebert PDN, Ratnasingham S, de Waard JR. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B (Supplement) 270: S96–S99. doi: 10.1098/rsbl.2003.0025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. (2004) Identification of birds through DNA barcodes. PLoS Biology 2: 1657-1663. doi: 10.1371/journal.pbio.0020312 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hebert PDN, de Waard JR, Landry JF. (2010) DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6: 359-362. doi: 10.1098/rsbl.2009.0848 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnsen A, Rindal E, Ericson PGP, Zuccon D, Kerr KCR, Stoeckle MY, Lifjeld D. (2010) DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. Journal of Ornithology 151: 565-578. doi: 10.1007/s10336-009-0490-3 [DOI] [Google Scholar]
  17. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN. (2007) Comprehensive DNA barcode coverage of North American birds. Molecular Ecology Notes 7: 535-543. doi: 10.1111/j.1471-8286.2007.01670.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL. (2009a) Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLoS ONE 4: e4379. doi: 10.1371/journal.pone.0004379 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerr KC, Birks SM, Kalyakin MV, Red’kin YA, Koblik EA, Hebert PD. (2009b) Filling the gap-COI barcode resolution in eastern Palearctic birds. Frontiers in Zoology 6(1): 29-42. doi: 10.1186/1742-9994-6-29 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liebers-Helbig D, Sternkopf V, Helbig AJ, de Knijff P. (2010) The Herring Gull complex (Larus argentatus-fuscus-cachinnans) as a model group for recent Holarctic vertebrate radiations. In: Glaubrecht M. (Ed) Evolution in Action, Springer, Berlin, 351–371. doi: 10.1007/978-3-642-12425-9_17 [DOI] [Google Scholar]
  21. Lijtmaer DA, Kerr KC, Stoeckle MY, Tubaro PL. (2012) DNA barcoding birds: from field collection to data analysis. In: Kress WJ, Erickson DL. (Eds) DNA Barcodes: Methods and Protocols, Springer, New York, 127–152. doi: 10.1007/978-1-61779-591-6_7 [DOI] [PubMed] [Google Scholar]
  22. Luo A, Zhang A, Ho SY, Xu W, Zhang Y, Shi W, Cameron SL, Zhu C. (2011) Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics 12(1): 84. doi: 10.1186/1471-2164-12-84 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meyer CP, Paulay G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3: e422. doi: 10.1371/journal.pbio.0030422 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moritz C, Cicero C. (2004) DNA barcoding: promise and pitfalls. PLoS Biology 2: 1529-1531. doi: 10.1371/journal.pbio.0020354 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Naro-Maciel E, Reid B, Fitzsimmons NN, Le M, DeSalle R, Amato G. (2009) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Molecular Ecology Resources 10: 252-263. doi: 10.1111/j.1755-0998.2009.02747.x [DOI] [PubMed] [Google Scholar]
  26. Nei M, Kumar S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Oxford. [Google Scholar]
  27. Neigel J, Domingo A, Stake J. (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26: 487-499. doi: 10.1007/s00338-007-0248-4 [DOI] [Google Scholar]
  28. Nijman V, Aliabadian M. (2010) Performance of distance-based DNA barcoding in the molecular identification of Primates. Comptes rendus Biologies 333: 11-16. doi: 10.1016/j.crvi.2009.10.003 [DOI] [PubMed] [Google Scholar]
  29. Nijman V, Aliabadian M. (2013) DNA barcoding as a tool for elucidating species delineation in wide-ranging species as illustrated by owls (Tytonidae and Strigidae). Zoological Science 30(11): 1005-1009. doi: 10.2108/zsj.30.1005 [DOI] [PubMed] [Google Scholar]
  30. Olsson U, Leader PJ, Carey GJ, Khan AA, Svensson L, Alström P. (2013) New insights into the intricate taxonomy and phylogeny of the Sylvia curruca complex. Molecular Phylogenetics and Evolution 67: 72-85. doi: 10.1016/j.ympev.2012.12.023 [DOI] [PubMed] [Google Scholar]
  31. Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. (2011) Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Molecular Biology and Evolution 28: 1927-1942. doi: 10.1093/molbev/msr014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Plaisance L, Knowlton N, Paulay G, Meyer C. (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28: 977-986. doi: 10.1007/s00338-009-0543-3 [DOI] [Google Scholar]
  33. Posada D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256. doi: 10.1093/molbev/msn083 [DOI] [PubMed] [Google Scholar]
  34. Ritz M. (2009) Speciation and hybridization in skuas (Catharacta spp.). PhD dissertation, Friedrich Schiller University, Jena.
  35. Rubinoff D. (2006) Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology 20: 1026-1033. doi: 10.1111/j.1523-1739.2006.00372.x [DOI] [PubMed] [Google Scholar]
  36. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R. (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B 360: 1805-1811. doi: 10.1098/rstb.2005.1730 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saunders GW. (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B 360: 1879-1888. doi: 10.1098/rstb.2005.1719 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Seifert KA, Samson RA, de Waard JR, Houbraken J, Levesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN. (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the USA 104: 3901–3906. doi: 10.1073/pnas.0611691104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith MA, Poyarkov NA, Hebert PDN. (2008) CO1 DNA barcoding amphibians: take the chance, meet the challenge. Molecular Ecology Resources 8: 235-246. doi: 10.1111/j.1471-8286.2007.01964.x [DOI] [PubMed] [Google Scholar]
  40. SOVON (2002) Atlas van de Nederlandse broedvogels 1998–2000. SOVON, Nijmegen. [Google Scholar]
  41. Srivathsan A, Meier R. (2012) On the inappropriate use of Kimura‐2‐parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28: 190-194. doi: 10.1111/j.1096-0031.2011.00370.x [DOI] [PubMed] [Google Scholar]
  42. Swofford DL. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (and other methods), Version 4b10. Sinauer Associates, Sunderland, Massachusets. [Google Scholar]
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739. doi: 10.1093/molbev/msr121 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taylor HR, Harris WE. (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12: 377-388. doi: 10.1111/j.1755-0998.2012.03119.x [DOI] [PubMed] [Google Scholar]
  45. Templeton AR, Crandall KA, Sing CF. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619-633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B 360: 1847-1857. doi: 10.1098/rstb.2005.1716 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Will KW, Mishler BD, Wheeler QD. (2005) The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 5: 844-51. doi: 10.1080/10635150500354878 [DOI] [PubMed] [Google Scholar]
  48. Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, Kim CB. (2006) DNA barcoding Korean birds. Molecules and Cells 22: 323-327. [PubMed] [Google Scholar]

Articles from ZooKeys are provided here courtesy of Pensoft Publishers

RESOURCES