Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 9;93(14):6913–6917. doi: 10.1073/pnas.93.14.6913

The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B.

M J van Raaij 1, J P Abrahams 1, A G Leslie 1, J E Walker 1
PMCID: PMC38908  PMID: 8692918

Abstract

In the structure of bovine mitochondrial F1-ATPase that was previously determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. Adenylyl-imidodiphosphate is bound to one beta-subunit (betaTP), ADP is bound to the second (betaDP), and no nucleotide is bound to the third (betaE). Here we show that the uncompetitive inhibitor aurovertin B binds to bovine F1 at two equivalent sites in betaTP and betaE, in a cleft between the nucleotide binding and C-terminal domains. In betaDP, the aurovertin B pocket is incomplete and is inaccessible to the inhibitor. The aurovertin B bound to betaTP interacts with alpha-Glu399 in the adjacent alphaTP subunit, whereas the aurovertin B bound to betaE is too distant from alphaE to make an equivalent interaction. Both sites encompass betaArg-412, which was shown by mutational studies to be involved in binding aurovertin. Except for minor changes around the aurovertin pockets, the structure of bovine F1-ATPase is the same as determined previously. Aurovertin B appears to act by preventing closure of the catalytic interfaces, which is essential for a catalytic mechanism involving cyclic interconversion of catalytic sites.

Full text

PDF
6913

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Bertina R. M., Schrier P. I., Slater E. C. The binding of aurovertin to mitochondria, and its effect on mitochondrial respiration. Biochim Biophys Acta. 1973 Jun 28;305(3):503–518. doi: 10.1016/0005-2728(73)90072-8. [DOI] [PubMed] [Google Scholar]
  3. Boyer P. D. The binding change mechanism for ATP synthase--some probabilities and possibilities. Biochim Biophys Acta. 1993 Jan 8;1140(3):215–250. doi: 10.1016/0005-2728(93)90063-l. [DOI] [PubMed] [Google Scholar]
  4. Chang T., Penefsky H. S. Aurovertin, a fluorescent probe of conformational change in beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1973 Apr 25;248(8):2746–2754. [PubMed] [Google Scholar]
  5. Cross R. L. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem. 1981;50:681–714. doi: 10.1146/annurev.bi.50.070181.003341. [DOI] [PubMed] [Google Scholar]
  6. Douglas M. G., Koh Y., Dockter M. E., Schatz G. Aurovertin binds to the beta subunit of yeast mitochondrial ATPase. J Biol Chem. 1977 Dec 10;252(23):8333–8335. [PubMed] [Google Scholar]
  7. Franck B., Gehrken H. P. Citreoviridins from Aspergillus terreus. Angew Chem Int Ed Engl. 1980;19(6):461–462. doi: 10.1002/anie.198004611. [DOI] [PubMed] [Google Scholar]
  8. Hicks D. B., Krulwich T. A. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem. 1990 Nov 25;265(33):20547–20554. [PubMed] [Google Scholar]
  9. Issartel J. P., Klein G., Satre M., Vignais P. V. Aurovertin binding sites on beef heart mitochondrial F1-ATPase. Study with [14C]aurovertin D of the binding stoichiometry and of the interaction between aurovertin and the natural ATPase inhibitor for binding to F1. Biochemistry. 1983 Jul 5;22(14):3492–3497. doi: 10.1021/bi00283a028. [DOI] [PubMed] [Google Scholar]
  10. Issartel J. P., Vignais P. V. Evidence for a nucleotide binding site on the isolated beta subunit from Escherichia coli F1-ATPase. Interaction between nucleotide and aurovertin D binding sites. Biochemistry. 1984 Dec 18;23(26):6591–6595. doi: 10.1021/bi00321a048. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. LARDY H. A., CONNELLY J. L., JOHNSON D. ANTIBIOTIC STUDIES. II. INHIBITION OF PHOSPHORYL TRANSFER IN MITOCHONDRIA BY OLIGOMYCIN AND AUROVERTIN. Biochemistry. 1964 Dec;3:1961–1968. doi: 10.1021/bi00900a030. [DOI] [PubMed] [Google Scholar]
  13. Lee C., Ernster L. Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin. Eur J Biochem. 1968 Feb;3(4):391–400. doi: 10.1111/j.1432-1033.1967.tb19542.x. [DOI] [PubMed] [Google Scholar]
  14. Lee R. S., Pagan J., Satre M., Vignais P. V., Senior A. E. Identification of a mutation in Escherichia coli F1-ATPase beta-subunit conferring resistance to aurovertin. FEBS Lett. 1989 Aug 14;253(1-2):269–272. doi: 10.1016/0014-5793(89)80973-1. [DOI] [PubMed] [Google Scholar]
  15. Lee R. S., Pagan J., Wilke-Mounts S., Senior A. E. Characterization of Escherichia coli ATP synthase beta-subunit mutations using a chromosomal deletion strain. Biochemistry. 1991 Jul 16;30(28):6842–6847. doi: 10.1021/bi00242a006. [DOI] [PubMed] [Google Scholar]
  16. Lenaz G. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation. Biochem Biophys Res Commun. 1965 Oct 26;21(2):170–175. doi: 10.1016/0006-291x(65)90104-x. [DOI] [PubMed] [Google Scholar]
  17. Linnett P. E., Beechey R. B. Inhibitors of the ATP synthethase system. Methods Enzymol. 1979;55:472–518. doi: 10.1016/0076-6879(79)55061-7. [DOI] [PubMed] [Google Scholar]
  18. Linnett P. E., Mitchell A. D., Osselton M. D., Mulheirn L. J., Beechey R. B. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase. Biochem J. 1978 Mar 15;170(3):503–510. doi: 10.1042/bj1700503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lutter R., Abrahams J. P., van Raaij M. J., Todd R. J., Lundqvist T., Buchanan S. K., Leslie A. G., Walker J. E. Crystallization of F1-ATPase from bovine heart mitochondria. J Mol Biol. 1993 Feb 5;229(3):787–790. doi: 10.1006/jmbi.1993.1081. [DOI] [PubMed] [Google Scholar]
  20. Rasmussen O. F., Shirvan M. H., Margalit H., Christiansen C., Rottem S. Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. Biochem J. 1992 Aug 1;285(Pt 3):881–888. doi: 10.1042/bj2850881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roberton A. M., Holloway C. T., Knight I. G., Beechey R. B. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles. Biochem J. 1968 Jul;108(3):445–456. doi: 10.1042/bj1080445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saishu T., Kagawa Y., Shimizu R. Resistance of thermophilic ATPase (TF1) to specific F1-atpase inhibitors including local anesthetics. Biochem Biophys Res Commun. 1983 May 16;112(3):822–826. doi: 10.1016/0006-291x(83)91691-1. [DOI] [PubMed] [Google Scholar]
  23. Satre M. The effect of asteltoxin and citreomontanine, two polyenic alpha-pyrone mycotoxins, on Escherichia coli adenosine triphosphate. Biochem Biophys Res Commun. 1981 May 15;100(1):267–274. doi: 10.1016/s0006-291x(81)80092-7. [DOI] [PubMed] [Google Scholar]
  24. Verschoor G. J., van der Sluis P. R., Slater E. C. The binding of aurovertin to isolated beta subunit of F1 (mitochondrial ATPase). Stoicheiometry of beta subunit in F1. Biochim Biophys Acta. 1977 Nov 17;462(2):438–449. doi: 10.1016/0005-2728(77)90141-4. [DOI] [PubMed] [Google Scholar]
  25. Weber J., Lee R. S., Grell E., Senior A. E. Investigation of the aurovertin binding site of Escherichia coli F1-ATPase by fluorescence spectroscopy and site-directed mutagenesis. Biochemistry. 1992 Jun 9;31(22):5112–5116. doi: 10.1021/bi00137a004. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES