Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 May;68(5):969–972. doi: 10.1073/pnas.68.5.969

A New Basis for Interpreting the Circular Dichroic Spectra of Proteins

V P Saxena 1,*, D B Wetlaufer 1,
PMCID: PMC389092  PMID: 5280530

Abstract

Experimental circular dichroic (CD) spectra of three proteins have been combined with estimates of the content of peptide-chain structural modes obtained from x-ray diffraction studies of the same proteins. Solution of the simultaneous equations at a series of wavelengths permits the construction of a CD spectrum for each of three structural modes: α-helix, β-structure, and the so-called “random”. The CD spectra thus obtained are compared with those obtained from polypeptide models. The α-helical spectra from the two approaches are nearly congruent, the β-structure spectra are in fair agreement, and the third forms agree qualitatively, but are substantially different quantitatively. Comparisons are made between the present approach and earlier approaches to interpreting protein CD spectra. Certain advantages of the present approach are indicated.

Full text

PDF
969

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake C. C., Koenig D. F., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 1965 May 22;206(4986):757–761. doi: 10.1038/206757a0. [DOI] [PubMed] [Google Scholar]
  2. Dearborn D. G., Wetlaufer D. B. Circular dichroism of putative unordered polypeptides and proteins. Biochem Biophys Res Commun. 1970 May 11;39(3):314–320. doi: 10.1016/0006-291x(70)90578-4. [DOI] [PubMed] [Google Scholar]
  3. Fasman G. D., Hoving H., Timasheff S. N. Circular dichroism of polypeptide and protein conformations. Film studies. Biochemistry. 1970 Aug 18;9(17):3316–3324. doi: 10.1021/bi00819a005. [DOI] [PubMed] [Google Scholar]
  4. Greenfield N., Davidson B., Fasman G. D. The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry. 1967 Jun;6(6):1630–1637. doi: 10.1021/bi00858a009. [DOI] [PubMed] [Google Scholar]
  5. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  6. HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
  7. Kartha G., Bello J., Harker D. Tertiary structure of ribonuclease. Nature. 1967 Mar 4;213(5079):862–865. doi: 10.1038/213862a0. [DOI] [PubMed] [Google Scholar]
  8. Ohtaki T., Milkman R. D., Williams C. M. ECDYSONE AND ECDYSONE ANALOGUES: THEIR ASSAY ON THE FLESHFLY Sarcophaga peregrina. Proc Natl Acad Sci U S A. 1967 Sep;58(3):981–984. doi: 10.1073/pnas.58.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ottaway C. A., Wetlaufer D. B. Light-scattering contributions to the circular dichroism of particulate systems. Arch Biochem Biophys. 1970 Aug;139(2):257–264. doi: 10.1016/0003-9861(70)90476-5. [DOI] [PubMed] [Google Scholar]
  10. Phillips D. C. The three-dimensional structure of an enzyme molecule. Sci Am. 1966 Nov;215(5):78–90. doi: 10.1038/scientificamerican1166-78. [DOI] [PubMed] [Google Scholar]
  11. SHECHTER E., CARVER J. P., BLOUT E. R. AN ANALYSIS OF THE OPTICAL ROTATORY DISPERSION OF POLYPEPTIDES AND PROTEINS, 3. Proc Natl Acad Sci U S A. 1964 Jun;51:1029–1036. doi: 10.1073/pnas.51.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stevens L., Townend R., Timasheff S. N., Fasman G. D., Potter J. The circular dichroism of polypeptide films. Biochemistry. 1968 Oct;7(10):3717–3720. doi: 10.1021/bi00850a051. [DOI] [PubMed] [Google Scholar]
  13. Straus J. H., Gordon A. S., Wallach D. F. The influence of tertiary structure upon the optical activity of three globular proteins: myoglobin, hemoglobin and lysozyme. Eur J Biochem. 1969 Dec;11(2):201–212. [PubMed] [Google Scholar]
  14. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
  15. Urry D. W. Partial molar rotatory powers and optical activity in proteins and polypeptides. I. The fully extended chain and the antiparallel beta-pleated sheet. Proc Natl Acad Sci U S A. 1968 Jun;60(2):394–401. doi: 10.1073/pnas.60.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vournakis J. N., Yan J. F., Scheraga H. A. Effect of side chains on the conformational energy and rotational strength of the n-pi transition for some alpha-helical poly-alpha-amino acids. Biopolymers. 1968;6(11):1531–1550. doi: 10.1002/bip.1968.360061103. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES