Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 May;68(5):992–996. doi: 10.1073/pnas.68.5.992

Three-Dimensional Molecular Models of Bacterial Cell Wall Mucopeptides (Peptidoglycans)

M V Kelemen 1,2, H J Rogers 1,2
PMCID: PMC389098  PMID: 4995823

Abstract

Molecular models have been built of mucopeptides (peptidoglycans) from various species of bacteria. If pairs of glycan chains are hydrogen-bonded as are those of chitin, the carboxyl groups of muramic acid are so oriented that a regular three-dimensional structure can be built. Helical conformation of the peptides is not likely, but pseudo-β conformation gives the possibility of multiple interpeptide hydrogen bonding. Calculations of the expected dimensions of the cell wall from the model for mucopeptide give results of the right order for bacilli. The effect of the configuration of the amino acids on the conformation of the peptide has been examined.

Full text

PDF
992

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baddiley J. The Leeuwenhoek lecture, 1967. Teichoic acids and the molecular structure of bacterial walls. Proc R Soc Lond B Biol Sci. 1968 Jul 9;170(1021):331–348. doi: 10.1098/rspb.1968.0043. [DOI] [PubMed] [Google Scholar]
  2. CARLSTROM D. The crystal structure of alpha-chitin (poly-N-acetyl-D-glucosamine). J Biophys Biochem Cytol. 1957 Sep 25;3(5):669–683. doi: 10.1083/jcb.3.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ghuysen J. M., Bricas E., Lache M., Leyh-Bouille M. Structure of the cell walls of Micrococcus lysodeikticus. 3. Isolation of a new peptide dimer, N-alpha-[L-alanyl-gamma-(alpha-D-glutamylglycine)]-L-lysyl-D-alanyl-N-alpha-[L-alanyl-gamma-(alpha-D-glutamylglycine)]-L-lysyl-D-alanine. Biochemistry. 1968 Apr;7(4):1450–1460. doi: 10.1021/bi00844a030. [DOI] [PubMed] [Google Scholar]
  4. Ghuysen J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed] [Google Scholar]
  5. Heilmann H. D., Preusser H. J. Kontrastierung von Murein mit Uranyl- und Chromsalzen. Biochim Biophys Acta. 1969 Oct 14;193(1):215–217. doi: 10.1016/0005-2736(69)90075-3. [DOI] [PubMed] [Google Scholar]
  6. Hughes R. C., Pavlik J. G., Rogers H. J., Tanner P. J. Organization of polymers in the cell walls of some bacilli. Nature. 1968 Aug 10;219(5154):642–644. doi: 10.1038/219642a0. [DOI] [PubMed] [Google Scholar]
  7. Leach S. J., Némethy G., Scheraga H. A. Computation of the sterically allowed conformations of peptides. Biopolymers. 1966 Apr-May;4(4):369–407. doi: 10.1002/bip.1966.360040402. [DOI] [PubMed] [Google Scholar]
  8. Marquis R. E. Salt-induced contraction of bacterial cell walls. J Bacteriol. 1968 Mar;95(3):775–781. doi: 10.1128/jb.95.3.775-781.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nermut M. V., Murray R. G. Ultrastructure of the cell wall of Bacillus polymyxa. J Bacteriol. 1967 Jun;93(6):1949–1965. doi: 10.1128/jb.93.6.1949-1965.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ou L. T., Marquis R. E. Electromechanical interactions in cell walls of gram-positive cocci. J Bacteriol. 1970 Jan;101(1):92–101. doi: 10.1128/jb.101.1.92-101.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROGERS H. J. The surface structures of bacteria. Biochem Soc Symp. 1963;22:55–104. [PubMed] [Google Scholar]
  12. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  13. Rogers H. J. Bacterial growth and the cell envelope. Bacteriol Rev. 1970 Jun;34(2):194–214. doi: 10.1128/br.34.2.194-214.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scott R. A., Vanderkooi G., Tuttle R. W., Shames P. M., Scheraga H. A. Minimization of polypeptide energy, iii. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidin-s. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2204–2211. doi: 10.1073/pnas.58.6.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Venkatachalam C. M., Ramachandran G. N. Conformation of polypeptide chains. Annu Rev Biochem. 1969;38:45–82. doi: 10.1146/annurev.bi.38.070169.000401. [DOI] [PubMed] [Google Scholar]
  16. WEIDEL W., PELZER H. BAGSHAPED MACROMOLECULES--A NEW OUTLOOK ON BACTERIAL CELL WALLS. Adv Enzymol Relat Areas Mol Biol. 1964;26:193–232. doi: 10.1002/9780470122716.ch5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES