Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 May;68(5):1006–1009. doi: 10.1073/pnas.68.5.1006

Solid-Phase Synthesis with Attachment of Peptide to Resin through an Amino Acid Side Chain: [8-Lysine]-Vasopressin

Johannes Meienhofer 1,2, Arnold Trzeciak 1,2
PMCID: PMC389101  PMID: 5280519

Abstract

It is proposed that the scope of solid-phase peptide synthesis could be considerably broadened by attaching peptides to the solid-phase through functional side-chain groups rather than through the commonly used α-carboxyl groups. Side-chain attachment offers the use of a large variety of chemical linkages to solid supports. Attachment through the ε-amino group of the lysine residue to a polystyrene resin has been applied to a solid-phase synthesis of lysine-vasopressin. Nα-tert-butyl-oxycarbonyl-L-lysyl-glycinamide was condensed with chloroformoxymethyl polystyrene-2% divinylbenzene resin. After removal of the Nα-protecting tert-butyloxycarbonyl group, the peptide chain was elongated by standard Merrifield procedures to give Tos-Cys(Bzl)-Tyr-Phe-Glu-(NH2) - Asp(NH2) - Cys(Bzl) - Pro - Lys(Z - resin) - Gly-NH2. Cleavage from the resin with HBr in dioxane or trifluoroacetic acid gave a partially protected nonapeptide hydrobromide. For purification, it was converted into a fully protected peptide by treatment with benzyl p-nitro-phenyl carbonate and crystallized. Deprotection by sodium in liquid ammonia, oxidative cyclization, IRC-50 desalting, and ion-exchange chromatography gave lysinevasopressin with high potency in a rat-pressor assay.

Full text

PDF
1006

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer E., Eckstein H., Hägele K., König W. A., Brüning W., Hagenmaier H., Parr W. Failure sequences in the solid phase synthesis of polypeptides. J Am Chem Soc. 1970 Mar 25;92(6):1735–1738. doi: 10.1021/ja00709a053. [DOI] [PubMed] [Google Scholar]
  2. Bayer E., Jun G., Halász I., Sebestian I. A new support for polypeptide synthesis in columns. Tetrahedron Lett. 1970 Nov;(51):4503–4505. doi: 10.1016/s0040-4039(01)83961-7. [DOI] [PubMed] [Google Scholar]
  3. Bayer E., Jung G., Hagenmaier H. Untersuchungen zur Totalsynthese des Ferredoxins. I. Synthese der Aminosäuresequenz von C. Pasteurianum Ferredoxin. Tetrahedron. 1968 Jul;24(13):4853–4860. doi: 10.1016/s0040-4020(01)98681-8. [DOI] [PubMed] [Google Scholar]
  4. Bodanszky M., Sheehan J. T. Active esters and resins in peptide synthesis. Chem Ind. 1966 Sep 17;38:1597–1598. [PubMed] [Google Scholar]
  5. DIXON H. B., STACK-DUNNE M. P. Chromatographic studies on corticotropin. Biochem J. 1955 Nov;61(3):483–495. doi: 10.1042/bj0610483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorman L. C., Love J. Esterification of neutral and basic dialkyl(arylmethylene)sulfonium resins with N-protected amino acids for use in solid phase peptide synthesis. J Org Chem. 1969 Jan;34(1):158–165. doi: 10.1021/jo00838a035. [DOI] [PubMed] [Google Scholar]
  7. Felix A. M., Merrifield R. B. Azide solid phase peptide synthesis. J Am Chem Soc. 1970 Mar 11;92(5):1385–1391. doi: 10.1021/ja00708a046. [DOI] [PubMed] [Google Scholar]
  8. Gutte B., Merrifield R. B. The total synthesis of an enzyme with ribonuclease A activity. J Am Chem Soc. 1969 Jan 15;91(2):501–502. doi: 10.1021/ja01030a050. [DOI] [PubMed] [Google Scholar]
  9. Hörnle S. Synthese der Rinder-Insulin-A-Kette nach der Merrifield-Methode unter ausschliesslicher Verwendung von tert.-Butyloxycarbonyl-aminosäure-p-nitro-phenylestern. Hoppe Seylers Z Physiol Chem. 1967 Nov;348(11):1355–1358. [PubMed] [Google Scholar]
  10. Krumdieck C. L., Baugh C. M. The solid-phase synthesis of polyglutamates of folic acid. Biochemistry. 1969 Apr;8(4):1568–1572. doi: 10.1021/bi00832a036. [DOI] [PubMed] [Google Scholar]
  11. LIGHT A., ACHER R., DU VIGNEAUD V. Ion exchange chromatography of purified posterior pituitary preparations. J Biol Chem. 1957 Oct;228(2):633–641. [PubMed] [Google Scholar]
  12. Lenard J., Robinson A. B. Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. J Am Chem Soc. 1967 Jan 4;89(1):181–182. doi: 10.1021/ja00977a057. [DOI] [PubMed] [Google Scholar]
  13. Li C. H., Yamashiro D. The synthesis of a protein possessing growth-promoting and lactogenic activities. J Am Chem Soc. 1970 Dec 30;92(26):7608–7609. doi: 10.1021/ja00729a028. [DOI] [PubMed] [Google Scholar]
  14. Losse G., Madlung C., Lorenz P. Peptidsynthese in fester Phase am Phenol-Formaldehyd-Harz. Chem Ber. 1968;101(4):1257–1262. doi: 10.1002/cber.19681010418. [DOI] [PubMed] [Google Scholar]
  15. Marglin A., Merrifield R. B. The synthesis of bovine insulin by the solid phase method. J Am Chem Soc. 1966 Nov 5;88(21):5051–5052. doi: 10.1021/ja00973a068. [DOI] [PubMed] [Google Scholar]
  16. Meienhofer J., Jacobs P. M., Godwin H. A., Rosenberg I. H. Synthesis of hepta-gamma-L-glutamic acid by conventional and solid-phase techniques. J Org Chem. 1970 Dec;35(12):4137–4140. doi: 10.1021/jo00837a600. [DOI] [PubMed] [Google Scholar]
  17. Meienhofer J., Sano Y. A solid-phase synthesis of [lysine]-vasopressin through a crystalline protected nonapeptide intermediate. J Am Chem Soc. 1968 May 22;90(11):2996–2997. doi: 10.1021/ja01013a067. [DOI] [PubMed] [Google Scholar]
  18. Meienhofer J., Trzeciak A., Havran R. T., Walter R. A solid-phase synthesis of (8-arginine)-vasopressin through a crystalline protected nonapeptide intermediate and biological properties of the hormone. J Am Chem Soc. 1970 Dec 2;92(24):7199–7202. doi: 10.1021/ja00727a031. [DOI] [PubMed] [Google Scholar]
  19. Merrifield R. B. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221–296. doi: 10.1002/9780470122778.ch6. [DOI] [PubMed] [Google Scholar]
  20. Mizoguchi T., Shigezane K., Takamura N. Bromoacylpolystyrene, a new type of polymer support for solid phase peptide synthesis. Chem Pharm Bull (Tokyo) 1969 Feb;17(2):411–412. doi: 10.1248/cpb.17.411. [DOI] [PubMed] [Google Scholar]
  21. Sano S., Kurihara M. Synthesis of an analogue of horse heart cytochrome c by the solid phase method. Hoppe Seylers Z Physiol Chem. 1969 Oct;350(10):1183–1187. doi: 10.1515/bchm2.1969.350.2.1183. [DOI] [PubMed] [Google Scholar]
  22. Schnabel E. Verbesserte Synthese von tert.-Butyloxycarbonyl-aminosäuren durch pH-Stat-Reaktion. Justus Liebigs Ann Chem. 1967;702:188–196. doi: 10.1002/jlac.19677020123. [DOI] [PubMed] [Google Scholar]
  23. Takashima H., Du Vigneaud V., Merrifield R. B. The synthesis of deamino-oxytocin by the solid phase method. J Am Chem Soc. 1968 Feb 28;90(5):1323–1325. doi: 10.1021/ja01007a038. [DOI] [PubMed] [Google Scholar]
  24. Tilak M. A. A facile method for the synthesis of benzyl esters using benzyl bromide or iodide and its application to solid phase and conventional peptide synthesis; attempted sterical selection in solid phase synthesis. Tetrahedron Lett. 1968 Dec;(60):6323–6326. doi: 10.1016/s0040-4039(00)75465-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES