Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 May;68(5):1051–1055. doi: 10.1073/pnas.68.5.1051

Interaction of Human Growth Hormone and Human Erythrocyte Membranes Studied by Intrinsic Fluorescence

Martin Sonenberg 1
PMCID: PMC389111  PMID: 5280521

Abstract

The intrinsic fluorescence of human erythrocyte membranes excited by unpolarized and polarized light has been studied with and without the addition of human growth hormone. The peak emission intensity of the membranes appeared at 332 nm, with a distinct shoulder at about 303 nm. Excitation spectra contained two peaks, at 282 and 225 nm. Fluorescence polarization was maximal (about 0.4) near 295 nm and decreased to approximately 0.18 near 225 nm. In the presence of 1 × 10-15 M human growth hormone, or 70 molecules per membrane (1.45 × 10-6 cm2), there was about a 20% decrease in peak membrane fluorescence. This occurred maximally with excitation at 282 and 225 nm, with little difference with excitation at 295 nm. Human growth hormone also decreased the fluorescence polarization from 0.34 to 0.25. The growth hormone effect was optimal at 37°C and pH 7.4. No effect was noted at pH 6.0 or 8.0. Bovine growth hormone or bovine serum albumin was without effect. A biologically active fragment from a tryptic digest of bovine growth hormone produced effects on membrane fluorescence similar to human growth hormone.

The data are consistent with the proposition that human growth hormone, by some cooperative mechanism, produces a conformational change in the membrane proteins with associated depolarization of fluorescence.

Full text

PDF
1051

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen R. F., Cohen P. F. Quenching of tyrosine fluorescence in proteins by phosphate. Arch Biochem Biophys. 1966 Jun;114(3):514–522. doi: 10.1016/0003-9861(66)90375-4. [DOI] [PubMed] [Google Scholar]
  3. Cowgill R. W. Fluorescence and protein structure. XVII. On the mechanism of peptide quenching. Biochim Biophys Acta. 1970 Jan 20;200(1):18–25. [PubMed] [Google Scholar]
  4. DELLACHA J. M., SONENBERG M. PURIFICATION OF BOVINE GROWTH HORMONE. J Biol Chem. 1964 May;239:1515–1520. [PubMed] [Google Scholar]
  5. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  6. FASMAN G., NORLAND K., PESCE A. CONFORMATIONAL DEPENDENCE OF THE FLUORESCENCE OF COPOLYMERS OF TYROSINE AND GLUTAMIC ACID IN AQUEOUS SOLUTION. Biopolym Symp. 1964;13:325–331. [PubMed] [Google Scholar]
  7. Fasman G. D., Bodenheimer E., Pesce A. Fluorescence studies on poly-alpha-amino acids: models of protein conformation. J Biol Chem. 1966 Feb 25;241(4):916–923. [PubMed] [Google Scholar]
  8. Feitelson J. Environmental effects on the fluorescence of tyrosine and its homologues. Photochem Photobiol. 1969 May;9(5):401–410. doi: 10.1111/j.1751-1097.1969.tb07306.x. [DOI] [PubMed] [Google Scholar]
  9. Free C. A., Sonenberg M. Separation and properties of multiple components of bovine growth hormone. J Biol Chem. 1966 Nov 10;241(21):5076–5082. [PubMed] [Google Scholar]
  10. Hohenwallner W., Ludescher E. Ergänzende Versuche zur Wirkung von menschlichem Washstumshormon auf die Glykolyse menschlicher Erythrocyten in vitro und auf die Aktivität der Phosphofruktokinase. Clin Chim Acta. 1970 May;28(2):255–258. doi: 10.1016/0009-8981(70)90088-4. [DOI] [PubMed] [Google Scholar]
  11. Ji T. H., Urry D. W. Correlation of light scattering and absorption flattening effects with distortions in the circular dichroism patterns of mitochondrial membrane fragments. Biochem Biophys Res Commun. 1969 Feb 21;34(4):404–411. doi: 10.1016/0006-291x(69)90396-9. [DOI] [PubMed] [Google Scholar]
  12. Lenard J. Protein and glycolipid components of human erythrocyte membranes. Biochemistry. 1970 Mar 3;9(5):1129–1132. doi: 10.1021/bi00807a012. [DOI] [PubMed] [Google Scholar]
  13. Lenard J., Singer S. J. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1828–1835. doi: 10.1073/pnas.56.6.1828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ludescher E., Hohenwallner W. Der Einfluss von menschlichem Wachstumshormon auf die Glykolyse im menschlichen Erythrocyten in vitro. Clin Chim Acta. 1969 Jun;24(3):423–430. doi: 10.1016/0009-8981(69)90115-6. [DOI] [PubMed] [Google Scholar]
  15. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oski F. A., Root A., Winegrad A. I. In vitro inhibition of erythrocyte glucose consumption by human growth hormone. Nature. 1967 Jul 1;215(5096):81–82. doi: 10.1038/215081a0. [DOI] [PubMed] [Google Scholar]
  17. Ottaway C. A., Wetlaufer D. B. Light-scattering contributions to the circular dichroism of particulate systems. Arch Biochem Biophys. 1970 Aug;139(2):257–264. doi: 10.1016/0003-9861(70)90476-5. [DOI] [PubMed] [Google Scholar]
  18. Root A. W., Oski F. A. Effects of human growth hormone in elderly males. J Gerontol. 1969 Jan;24(1):97–104. doi: 10.1093/geronj/24.1.97. [DOI] [PubMed] [Google Scholar]
  19. Rosenberg S. A., Guidotti G. The protein of human erythrocyte membranes. I. Preparation, solubilization, and partial characterization. J Biol Chem. 1968 Apr 25;243(8):1985–1992. [PubMed] [Google Scholar]
  20. Saxena B. B., Henneman P. H. Isolation and properties of the electrophoretic components of human growth hormone by Sephadex-gel filtration and preparative polyacrylamide-gel electrophoresis. Biochem J. 1966 Sep;100(3):711–717. doi: 10.1042/bj1000711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider A. S., Schneider M. J., Rosenheck K. Optical activity of biological membranes: scattering effects and protein conformation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):793–798. doi: 10.1073/pnas.66.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sonenberg M. Interaction of human growth hormone and human erythrocytes membranes as demonstrated by circular dichroism. Biochem Biophys Res Commun. 1969 Aug 7;36(3):450–455. doi: 10.1016/0006-291x(69)90585-3. [DOI] [PubMed] [Google Scholar]
  23. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  24. Urry D. W., Ji T. H. Distortions in circular dichroism patterns of particulate (or membranous) systems. Arch Biochem Biophys. 1968 Dec;128(3):802–807. doi: 10.1016/0003-9861(68)90088-x. [DOI] [PubMed] [Google Scholar]
  25. Urry D. W., Krivacic J. Differential scatter of left and right circularly polarized light by optically active particulate systems. Proc Natl Acad Sci U S A. 1970 Apr;65(4):845–852. doi: 10.1073/pnas.65.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WESTERMAN M. P., PIERCE L. E., JENSEN W. N. A direct method for the quantitative measurement of red cell dimensions. J Lab Clin Med. 1961 May;57:819–824. [PubMed] [Google Scholar]
  27. Wallach D. F., Ferber E., Selin D., Weidekamm E., Fischer H. The study of lipid-protein interactions in membranes by fluorescent probes. Biochim Biophys Acta. 1970 Mar 17;203(1):67–76. doi: 10.1016/0005-2736(70)90036-2. [DOI] [PubMed] [Google Scholar]
  28. Yamasaki N., Kikutani M., Sonenberg M. Peptides of a biologically active tryptic digest of bovine growth hormone. Biochemistry. 1970 Mar 3;9(5):1107–1114. doi: 10.1021/bi00807a009. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES