Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 9;93(14):6941–6946. doi: 10.1073/pnas.93.14.6941

Lack of the DNA repair protein O6-methylguanine-DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors.

J R Silber 1, A Blank 1, M S Bobola 1, B A Mueller 1, D D Kolstoe 1, G A Ojemann 1, M S Berger 1
PMCID: PMC38913  PMID: 8692923

Abstract

Exposure to exogenous alkylating agents, particularly N-nitroso compounds, has been associated with increased incidence of primary human brain tumors, while intrinsic risk factors are currently unknown. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a major defense against the carcinogenicity of N-nitroso compounds and other alkylators. We report here that in 55% (64/117) of cases, histologically normal brain tissue adjacent to primary human brain tumors lacked detectable MGMT activity [methyl excision repair-defective (Mer-) status]. The incidence of Mer- status in normal brain tissue from brain tumor patients was age-dependent, increasing from 21% in children 0.25-19 years of age to 75% in adults over 50. In contrast, Mer- status was found in 12% (5/43) of normal brain specimens from patients operated for conditions other than primary brain tumors and was not age-dependent. The 4.6-fold elevation in incidence of Mer- status in brain tumor patients is highly significant (chi2 = 24; p < or = 0.001). MGMT activity was independent of age in the lymphocytes of brain tumor patients and was present in lymphocytes from six of nine tumor patients whose normal brain specimen was Mer-. DNA polymerase beta, apurinic/apyrimidinic endonuclease, and lactate dehydrogenase activities were present in all specimens tested, including Mer- specimens from brain tumor patients. Our data are consistent with a model of carcinogenesis in human brain in which epigenetically regulated lack of MGMT is a predisposing factor and alkylation-related mutagenesis is a driving force.

Full text

PDF
6941

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquilina G., Biondo R., Dogliotti E., Meuth M., Bignami M. Expression of the endogenous O6-methylguanine-DNA-methyltransferase protects Chinese hamster ovary cells from spontaneous G:C to A:T transitions. Cancer Res. 1992 Dec 1;52(23):6471–6475. [PubMed] [Google Scholar]
  2. Arap W., Nishikawa R., Furnari F. B., Cavenee W. K., Huang H. J. Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Cancer Res. 1995 Mar 15;55(6):1351–1354. [PubMed] [Google Scholar]
  3. Athas W. F., Hedayati M. A., Matanoski G. M., Farmer E. R., Grossman L. Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res. 1991 Nov 1;51(21):5786–5793. [PubMed] [Google Scholar]
  4. Baker S. M., Bronner C. E., Zhang L., Plug A. W., Robatzek M., Warren G., Elliott E. A., Yu J., Ashley T., Arnheim N. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 1995 Jul 28;82(2):309–319. doi: 10.1016/0092-8674(95)90318-6. [DOI] [PubMed] [Google Scholar]
  5. Barrows L. R., Magee P. N. Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis. 1982;3(3):349–351. doi: 10.1093/carcin/3.3.349. [DOI] [PubMed] [Google Scholar]
  6. Bartsch H., Montesano R. Relevance of nitrosamines to human cancer. Carcinogenesis. 1984 Nov;5(11):1381–1393. doi: 10.1093/carcin/5.11.1381. [DOI] [PubMed] [Google Scholar]
  7. Bignami M., Terlizzese M., Zijno A., Calcagnile A., Frosina G., Abbondandolo A., Dogliotti E. Cytotoxicity, mutations and SCEs induced by methylating agents are reduced in CHO cells expressing an active mammalian O6-methylguanine-DNA methyltransferase gene. Carcinogenesis. 1987 Oct;8(10):1417–1421. doi: 10.1093/carcin/8.10.1417. [DOI] [PubMed] [Google Scholar]
  8. Black P. M. Brain tumors. Part 1. N Engl J Med. 1991 May 23;324(21):1471–1476. doi: 10.1056/NEJM199105233242105. [DOI] [PubMed] [Google Scholar]
  9. Blank A., Silber J. R., Thelen M. P., Dekker C. A. Detection of enzymatic activities in sodium dodecyl sulfate-polyacrylamide gels: DNA polymerases as model enzymes. Anal Biochem. 1983 Dec;135(2):423–430. doi: 10.1016/0003-2697(83)90705-4. [DOI] [PubMed] [Google Scholar]
  10. Brent T. P., von Wronski M. A., Edwards C. C., Bromley M., Margison G. P., Rafferty J. A., Pegram C. N., Bigner D. D. Identification of nitrosourea-resistant human rhabdomyosarcomas by in situ immunostaining of O6-methylguanine-DNA methyltransferase. Oncol Res. 1993;5(2):83–86. [PubMed] [Google Scholar]
  11. Bronstein S. M., Cochrane J. E., Craft T. R., Swenberg J. A., Skopek T. R. Toxicity, mutagenicity, and mutational spectra of N-ethyl-N-nitrosourea in human cell lines with different DNA repair phenotypes. Cancer Res. 1991 Oct 1;51(19):5188–5197. [PubMed] [Google Scholar]
  12. CABAUD P. G., WROBLEWSKI F. Colorimetric measurement of lactic dehydrogenase activity of body fluids. Am J Clin Pathol. 1958 Sep;30(3):234–236. doi: 10.1093/ajcp/30.3.234. [DOI] [PubMed] [Google Scholar]
  13. Cairns-Smith S., Karran P. Epigenetic silencing of the DNA repair enzyme O6-methylguanine-DNA methyltransferase in Mex- human cells. Cancer Res. 1992 Oct 1;52(19):5257–5263. [PubMed] [Google Scholar]
  14. Chen D. S., Herman T., Demple B. Two distinct human DNA diesterases that hydrolyze 3'-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res. 1991 Nov 11;19(21):5907–5914. doi: 10.1093/nar/19.21.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Citron M., Decker R., Chen S., Schneider S., Graver M., Kleynerman L., Kahn L. B., White A., Schoenhaus M., Yarosh D. O6-methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung, and ovary. Cancer Res. 1991 Aug 15;51(16):4131–4134. [PubMed] [Google Scholar]
  16. Citron M., White A., Decker R., Wasserman P., Li B., Randall T., Guerra D., Belanich M., Yarosh D. O6-methylguanine-DNA methyltransferase in human brain tumors detected by activity assay and monoclonal antibodies. Oncol Res. 1995;7(1):49–55. [PubMed] [Google Scholar]
  17. Costello J. F., Futscher B. W., Tano K., Graunke D. M., Pieper R. O. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem. 1994 Jun 24;269(25):17228–17237. [PubMed] [Google Scholar]
  18. Crist W. M., Kun L. E. Common solid tumors of childhood. N Engl J Med. 1991 Feb 14;324(7):461–471. doi: 10.1056/NEJM199102143240706. [DOI] [PubMed] [Google Scholar]
  19. Dumenco L. L., Allay E., Norton K., Gerson S. L. The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science. 1993 Jan 8;259(5092):219–222. doi: 10.1126/science.8421782. [DOI] [PubMed] [Google Scholar]
  20. Ellison K. S., Dogliotti E., Connors T. D., Basu A. K., Essigmann J. M. Site-specific mutagenesis by O6-alkylguanines located in the chromosomes of mammalian cells: influence of the mammalian O6-alkylguanine-DNA alkyltransferase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8620–8624. doi: 10.1073/pnas.86.22.8620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goth R., Rajewsky M. F. Persistence of O6-ethylguanine in rat-brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci U S A. 1974 Mar;71(3):639–643. doi: 10.1073/pnas.71.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaina B., Fritz G., Mitra S., Coquerelle T. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis. 1991 Oct;12(10):1857–1867. doi: 10.1093/carcin/12.10.1857. [DOI] [PubMed] [Google Scholar]
  23. Karran P., Bignami M. DNA damage tolerance, mismatch repair and genome instability. Bioessays. 1994 Nov;16(11):833–839. doi: 10.1002/bies.950161110. [DOI] [PubMed] [Google Scholar]
  24. Kovacs E., Weber W., Müller H. Age-related variation in the DNA-repair synthesis after UV-C irradiation in unstimulated lymphocytes of healthy blood donors. Mutat Res. 1984 May-Jun;131(5-6):231–237. doi: 10.1016/0167-8817(84)90030-0. [DOI] [PubMed] [Google Scholar]
  25. Lantos P. L. Development of nitrosourea-induced brain tumours--with a special note on changes occurring during latency. Food Chem Toxicol. 1986 Feb;24(2):121–127. doi: 10.1016/0278-6915(86)90346-7. [DOI] [PubMed] [Google Scholar]
  26. Lee S. M., Rafferty J. A., Elder R. H., Fan C. Y., Bromley M., Harris M., Thatcher N., Potter P. M., Altermatt H. J., Perinat-Frey T. Immunohistological examination of the inter- and intracellular distribution of O6-alkylguanine DNA-alkyltransferase in human liver and melanoma. Br J Cancer. 1992 Aug;66(2):355–360. doi: 10.1038/bjc.1992.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacPhee D. G. Mismatch repair, somatic mutations, and the origins of cancer. Cancer Res. 1995 Dec 1;55(23):5489–5492. [PubMed] [Google Scholar]
  28. Maher V. M., Domoradzki J., Bhattacharyya N. P., Tsujimura T., Corner R. C., McCormick J. J. Alkylation damage, DNA repair and mutagenesis in human cells. Mutat Res. 1990 Nov-Dec;233(1-2):235–245. doi: 10.1016/0027-5107(90)90166-2. [DOI] [PubMed] [Google Scholar]
  29. Mirvish S. S. Formation of N-nitroso compounds: chemistry, kinetics, and in vivo occurrence. Toxicol Appl Pharmacol. 1975 Mar;31(3):325–351. doi: 10.1016/0041-008x(75)90255-0. [DOI] [PubMed] [Google Scholar]
  30. Nakatsuru Y., Matsukuma S., Nemoto N., Sugano H., Sekiguchi M., Ishikawa T. O6-methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6468–6472. doi: 10.1073/pnas.90.14.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ning J. P., Yu M. C., Wang Q. S., Henderson B. E. Consumption of salted fish and other risk factors for nasopharyngeal carcinoma (NPC) in Tianjin, a low-risk region for NPC in the People's Republic of China. J Natl Cancer Inst. 1990 Feb 21;82(4):291–296. doi: 10.1093/jnci/82.4.291. [DOI] [PubMed] [Google Scholar]
  32. Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol. 1995;51:167–223. doi: 10.1016/s0079-6603(08)60879-x. [DOI] [PubMed] [Google Scholar]
  33. Pero R. W., Miller D. G., Lipkin M., Markowitz M., Gupta S., Winawer S. J., Enker W., Good R. Reduced capacity for DNA repair synthesis in patients with or genetically predisposed to colorectal cancer. J Natl Cancer Inst. 1983 May;70(5):867–875. [PubMed] [Google Scholar]
  34. Preston-Martin S., Mack W., Henderson B. E. Risk factors for gliomas and meningiomas in males in Los Angeles County. Cancer Res. 1989 Nov 1;49(21):6137–6143. [PubMed] [Google Scholar]
  35. Preston-Martin S., Yu M. C., Benton B., Henderson B. E. N-Nitroso compounds and childhood brain tumors: a case-control study. Cancer Res. 1982 Dec;42(12):5240–5245. [PubMed] [Google Scholar]
  36. Radman M., Wagner R. Carcinogenesis. Missing mismatch repair. Nature. 1993 Dec 23;366(6457):722–722. doi: 10.1038/366722a0. [DOI] [PubMed] [Google Scholar]
  37. Riggs J. E. Rising primary malignant brain tumor mortality in the elderly. A manifestation of differential survival. Arch Neurol. 1995 Jun;52(6):571–575. doi: 10.1001/archneur.1995.00540300043011. [DOI] [PubMed] [Google Scholar]
  38. Rüdiger H. W., Schwartz U., Serrand E., Stief M., Krause T., Nowak D., Doerjer G., Lehnert G. Reduced O6-methylguanine repair in fibroblast cultures from patients with lung cancer. Cancer Res. 1989 Oct 15;49(20):5623–5626. [PubMed] [Google Scholar]
  39. Saffhill R., Margison G. P., O'Connor P. J. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta. 1985 Dec 17;823(2):111–145. doi: 10.1016/0304-419x(85)90009-5. [DOI] [PubMed] [Google Scholar]
  40. Sagher D., Karrison T., Schwartz J. L., Larson R., Meier P., Strauss B. Low O6-alkylguanine DNA alkyltransferase activity in the peripheral blood lymphocytes of patients with therapy-related acute nonlymphocytic leukemia. Cancer Res. 1988 Jun 1;48(11):3084–3089. [PubMed] [Google Scholar]
  41. Silber J. R., Mueller B. A., Ewers T. G., Berger M. S. Comparison of O6-methylguanine-DNA methyltransferase activity in brain tumors and adjacent normal brain. Cancer Res. 1993 Jul 15;53(14):3416–3420. [PubMed] [Google Scholar]
  42. Singer B., Bodell W. J., Cleaver J. E., Thomas G. H., Rajewsky M. F., Thon W. Oxygens in DNA are main targets for ethylnitrosourea in normal and xeroderma pigmentosum fibroblasts and fetal rat brain cells. Nature. 1978 Nov 2;276(5683):85–88. doi: 10.1038/276085a0. [DOI] [PubMed] [Google Scholar]
  43. Skorpen F., Krokan H. E. The methylation status of the gene for O6-methylguanine-DNA methyltransferase in human Mer+ and Mer- cells. Carcinogenesis. 1995 Aug;16(8):1857–1863. doi: 10.1093/carcin/16.8.1857. [DOI] [PubMed] [Google Scholar]
  44. Strauss B. S. The origin of point mutations in human tumor cells. Cancer Res. 1992 Jan 15;52(2):249–253. [PubMed] [Google Scholar]
  45. Thomale J., Huh N. H., Nehls P., Eberle G., Rajewsky M. F. Repair of O6-ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9883–9887. doi: 10.1073/pnas.87.24.9883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vaca C. E., Wilhelm J., Harms-Ringdahl M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res. 1988 Mar;195(2):137–149. doi: 10.1016/0165-1110(88)90022-x. [DOI] [PubMed] [Google Scholar]
  47. Warner H. R., Demple B. F., Deutsch W. A., Kane C. M., Linn S. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4602–4606. doi: 10.1073/pnas.77.8.4602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Washington W. J., Foote R. S., Dunn W. C., Generoso W. M., Mitra S. Age-dependent modulation of tissue-specific repair activity for 3-methyladenine and O6-methylguanine in DNA in inbred mice. Mech Ageing Dev. 1989 Apr;48(1):43–52. doi: 10.1016/0047-6374(89)90024-9. [DOI] [PubMed] [Google Scholar]
  49. Wei Q., Matanoski G. M., Farmer E. R., Hedayati M. A., Grossman L. DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1614–1618. doi: 10.1073/pnas.90.4.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wiestler O., Kleihues P., Pegg A. E. O6-alkylguanine-DNA alkyltransferase activity in human brain and brain tumors. Carcinogenesis. 1984 Jan;5(1):121–124. doi: 10.1093/carcin/5.1.121. [DOI] [PubMed] [Google Scholar]
  51. Wrensch M., Bondy M. L., Wiencke J., Yost M. Environmental risk factors for primary malignant brain tumors: a review. J Neurooncol. 1993 Jul;17(1):47–64. doi: 10.1007/BF01054274. [DOI] [PubMed] [Google Scholar]
  52. de Wind N., Dekker M., Berns A., Radman M., te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995 Jul 28;82(2):321–330. doi: 10.1016/0092-8674(95)90319-4. [DOI] [PubMed] [Google Scholar]
  53. von Wronski M. A., Brent T. P. Effect of 5-azacytidine on expression of the human DNA repair enzyme O6-methylguanine-DNA methyltransferase. Carcinogenesis. 1994 Apr;15(4):577–582. doi: 10.1093/carcin/15.4.577. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES