Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Jun;68(6):1364–1368. doi: 10.1073/pnas.68.6.1364

Conformational Model of Active Transport: Role of Protons

John H Young 1, George A Blondin 1, David E Green 1
PMCID: PMC389190  PMID: 5288387

Abstract

A conformational model of monovalent cation transport in mitochondria is described. Because it incorporates the proton-generated membrane potential and pH differential of the chemiosmotic model, the model successfully rationalizes a wide variety of mitochondrial ion-transport phenomena.

Keywords: mitochondria, cations, valinomycin, nigericin

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondin G. A., DeCastro A. F., Senior A. E. The isolation and properties of a peptide ionophore from beef heart mitochondria. Biochem Biophys Res Commun. 1971 Apr 2;43(1):28–35. doi: 10.1016/s0006-291x(71)80080-3. [DOI] [PubMed] [Google Scholar]
  2. Blondin G. A., Green D. E. Mechanism of mitochondrial swelling. 3. Two forms of energized swelling. Arch Biochem Biophys. 1969 Jul;132(2):509–523. doi: 10.1016/0003-9861(69)90395-6. [DOI] [PubMed] [Google Scholar]
  3. Cockrell R. S., Racker E. Respiratory control and K+ transport in submitochondrial particles. Biochem Biophys Res Commun. 1969 May 8;35(3):414–419. doi: 10.1016/0006-291x(69)90515-4. [DOI] [PubMed] [Google Scholar]
  4. Goodall M. C. Structural effects in the action of antibiotics on the ion permeability of lipid bilayers. I. Tyrocidine B. Biochim Biophys Acta. 1970 Mar 17;203(1):28–33. doi: 10.1016/0005-2736(70)90032-5. [DOI] [PubMed] [Google Scholar]
  5. Green D. E. The conformational basis of energy transductions in biological systems. Proc Natl Acad Sci U S A. 1970 Oct;67(2):544–549. doi: 10.1073/pnas.67.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green D. E., Young J. H. Energy transduction in membrane systems. Am Sci. 1971 Jan-Feb;59(1):92–100. [PubMed] [Google Scholar]
  7. Harris E. J., Cockrell R., Pressman B. C. Induced and spontaneous movements of potassium ions into mitochondria. Biochem J. 1966 Apr;99(1):200–213. doi: 10.1042/bj0990200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harris R. A., Penniston J. T., Asai J., Green D. E. The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states. Proc Natl Acad Sci U S A. 1968 Mar;59(3):830–837. doi: 10.1073/pnas.59.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopfer U., Lehninger A. L., Thompson T. E. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc Natl Acad Sci U S A. 1968 Feb;59(2):484–490. doi: 10.1073/pnas.59.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lardy H. A., Graven S. N., Estrada S. Specific induction and inhibition of cation and anion transport in mitochondria. Fed Proc. 1967 Sep;26(5):1355–1360. [PubMed] [Google Scholar]
  11. Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Onsager L. The motion of ions: principles and concepts. Science. 1969 Dec 12;166(3911):1359–1364. doi: 10.1126/science.166.3911.1359. [DOI] [PubMed] [Google Scholar]
  13. Orttung W. H. Proton binding and dipole moment of hemoglobin. Refined calculations. Biochemistry. 1970 Jun 9;9(12):2394–2402. doi: 10.1021/bi00814a002. [DOI] [PubMed] [Google Scholar]
  14. Penniston J. T., Harris R. A., Asai J., Green D. E. The conformational basis of energy transformations in membrane systems. I. Conformational changes in mitochondria. Proc Natl Acad Sci U S A. 1968 Feb;59(2):624–631. doi: 10.1073/pnas.59.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  16. Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Skulachev V. P. Electric fields in coupling membranes. FEBS Lett. 1970 Dec 18;11(5):301–308. doi: 10.1016/0014-5793(70)80554-3. [DOI] [PubMed] [Google Scholar]
  18. Tupper J. T., Tedeschi H. Microelectrode studies on the membrane properties of isolated mitochondria. II. Absence of a metabolic dependence. Proc Natl Acad Sci U S A. 1969 Jul;63(3):713–717. doi: 10.1073/pnas.63.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams C. H., Vail W. J., Harris R. A., Caldwell M., Green D. E., Valdivia E. Conformational basis of energy transduction in membrane systems. 8. Configurational changes of mitochondria in situ and in vitro. J Bioenerg. 1970 Jul;1(2):147–180. doi: 10.1007/BF01515979. [DOI] [PubMed] [Google Scholar]
  20. Young J. H., Blondin G. A., Vanderkooi G., Green D. E. Conformational model of active transport. Proc Natl Acad Sci U S A. 1970 Oct;67(2):550–559. doi: 10.1073/pnas.67.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES