Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Jul;68(7):1474–1478. doi: 10.1073/pnas.68.7.1474

A Translocation-Associated Ribosomal Conformation Change Detected by Hydrogen Exchange and Sedimentation Velocity

De-Maw Chuang 1, Melvin V Simpson 1
PMCID: PMC389221  PMID: 4934519

Abstract

Translocation in ribosomes consists of transposition of peptidyl-tRNA from the aminoacyl to the peptidyl site and, probably concomitantly, the movement of ribosomes on mRNA. Does a conformational change in the ribosome provide the motive force for this process? Hydrogen exchange and sedimentation velocity experiments indicate that the Escherichia coli ribosome does undergo a conformational change associated with translocation. When pretranslocational ribosomes carrying acetyldiphenylalanyl-tRNA in the aminoacyl site were incubated with G factor and GTP, translocation occurred, with a concomitant increase in hydrogen exchange rate and a decrease in sedimentation constant. These changes did not occur when GTP was replaced by a nonhydrolyzable analogue, GDP-CH2-P, and they were blocked by the antibiotics fusidic acid and thiostrepton. When posttranslocational ribosomes were cycled back to the pretranslocational state by T factor, GTP, and phenylalanyl-tRNA, the sedimentation constant reverted to the original value. Whether or not this conformation change drives translocation requires further study.

Keywords: fusidic acid, thiostrepton, 5′-guanylylmethylenediphosphonate

Full text

PDF
1474

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodley J. W., Zieve F. J., Lin L., Zieve S. T. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun. 1969 Oct 22;37(3):437–443. doi: 10.1016/0006-291x(69)90934-6. [DOI] [PubMed] [Google Scholar]
  2. Gantt R. R., Englander S. W., Simpson M. V. Hydrogen-exchange measurements on Escherichia coli transfer ribonucleic acid before, after, and during its aminoacylation. Biochemistry. 1969 Feb;8(2):475–482. doi: 10.1021/bi00830a003. [DOI] [PubMed] [Google Scholar]
  3. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  4. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  5. Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heintz R., McAllister H., Arlinghaus R., Schweet R. Formation and function of the active ribosome complex. Cold Spring Harb Symp Quant Biol. 1966;31:633–639. doi: 10.1101/sqb.1966.031.01.082. [DOI] [PubMed] [Google Scholar]
  7. Hill T. L. A proposed common allosteric mechanism for active transport, muscle contraction, and ribosomal translocation. Proc Natl Acad Sci U S A. 1969 Sep;64(1):267–274. doi: 10.1073/pnas.64.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
  9. Lin S. Y., McKeehan W. L., Culp W., Hardesty B. Partial characterization of the enzymatic properties of the aminoacyl transfer ribonucleic acid binding enzyme. J Biol Chem. 1969 Aug 25;244(16):4340–4350. [PubMed] [Google Scholar]
  10. Lipmann F. Polypeptide chain elongation in protein biosynthesis. Science. 1969 May 30;164(3883):1024–1031. doi: 10.1126/science.164.3883.1024. [DOI] [PubMed] [Google Scholar]
  11. Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  13. Pestka S. Thiostrepton: a ribosomal inhibitor of translocation. Biochem Biophys Res Commun. 1970 Aug 11;40(3):667–674. doi: 10.1016/0006-291x(70)90956-3. [DOI] [PubMed] [Google Scholar]
  14. Schreier M. H., Noll H. Chain initiation in primitive protein synthesis: a 60S intermediate in the formation of active 70S ribosomes. Nature. 1970 Jul 11;227(5254):128–133. doi: 10.1038/227128a0. [DOI] [PubMed] [Google Scholar]
  15. Schreier M. H., Noll H. Conformational changes in ribosomes during protein synthesis. Proc Natl Acad Sci U S A. 1971 Apr;68(4):805–809. doi: 10.1073/pnas.68.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sherman M. I., Chuang D. M., Simpson M. V. Streptomycin and ribosome conformation changes. Cold Spring Harb Symp Quant Biol. 1969;34:109–111. [PubMed] [Google Scholar]
  17. Sherman M. I., Simpson M. V. Ribosomal conformation changes during subunit dissociation and reassociation. Cold Spring Harb Symp Quant Biol. 1969;34:220–222. [PubMed] [Google Scholar]
  18. Sherman M. I., Simpson M. V. The role of ribosomal conformation in protein biosynthesis: the streptomycin-ribosome interaction. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1388–1395. doi: 10.1073/pnas.64.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spirin A. S. A model of the functioning ribosome: locking and unlocking of the ribosome subparticles. Cold Spring Harb Symp Quant Biol. 1969;34:197–207. doi: 10.1101/sqb.1969.034.01.026. [DOI] [PubMed] [Google Scholar]
  20. Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
  21. Von Hippel P. H., Printz M. P. Dynamic aspects of DNA structure as studies by hydrogen exchange. Fed Proc. 1965 Nov-Dec;24(6):1458–1465. [PubMed] [Google Scholar]
  22. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES