Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2013 Dec 17;170(8):1652–1675. doi: 10.1111/bph.12448

The Concise Guide to Pharmacology 2013/14: Nuclear Hormone Receptors

Stephen PH Alexander 1,*, Helen E Benson 2, Elena Faccenda 2, Adam J Pawson 2, Joanna L Sharman 2, Michael Spedding 3, John A Peters 4, Anthony J Harmar 2
PMCID: PMC3892290  PMID: 24528240

Abstract

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.

It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.

An Introduction to Nuclear Hormone Receptors

Nuclear hormone receptors are specialised transcription factors with commonalities of sequence and structure, which bind as homo- or heterodimers to specific consensus sequences of DNA (response elements) in the promoter region of particular target genes. They regulate (either promoting or repressing) transcription of these target genes in response to a variety of endogenous ligands. Endogenous agonists are hydrophobic entities which, when bound to the receptor promote conformational changes in the receptor to allow recruitment (or dissociation) of protein partners, generating a large multiprotein complex.

Two major subclasses of nuclear hormone receptors with identified endogenous agonists can be identified: steroid and non-steroid hormone receptors. Steroid hormone receptors function typically as dimeric entities and are thought to be resident outside the nucleus in the unliganded state in a complex with chaperone proteins, which are liberated upon agonist binding. Migration to the nucleus and interaction with other regulators of gene transcription, including RNA polymerase, acetyltransferases and deacetylases, allows gene transcription to be regulated. Non-steroid hormone receptors typically exhibit a greater distribution in the nucleus in the unliganded state and interact with other nuclear hormone receptors to form heterodimers, as well as with other regulators of gene transcription, leading to changes in gene transcription upon agonist binding.

Selectivity of gene regulation is brought about through interaction of nuclear hormone receptors with particular consensus sequences of DNA, which are arranged typically as repeats or inverted palindromes to allow accumulation of multiple transcription factors in the promoter regions of genes.

Acknowledgments

We wish to acknowledge the tremendous help provided by the Consultants to the Guides past and present (see list in the Overview, p. 1452). We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z]), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.

Conflict of interest

The authors state that there is no conflict of interest to disclose.

List of records presented

  1. 1654 1A. Thyroid Hormone Receptors

  2. 1655 1B. Retinoic acid receptors

  3. 1656 1C. Peroxisome proliferator-activated receptors

  4. 1657 1D. Rev-Erb receptors

  5. 1658 1F. Retinoic acid-related orphans

  6. 1659 1H. Liver X receptor-like receptors

  7. 1660 1I. Vitamin D receptor-like receptors

  8. 1661 2A. Hepatocyte nuclear factor-4 receptors

  9. 1662 2B. Retinoid X receptors

  10. 1663 2C. Testicular receptors

  11. 1664 2E. Tailless-like receptors

  12. 1665 2F. COUP-TF-like receptors

  13. 1666 3B. Estrogen-related receptors

  14. 1667 4A. Nerve growth factor IB-like receptors

  15. 1668 5A. Fushi tarazu F1-like receptors

  16. 1669 6A. Germ cell nuclear factor receptors

  17. 1670 0B. DAX-like receptors

  18. 1671 Steroid hormone receptors

1A. Thyroid Hormone Receptors

Overview

Thyroid hormone receptors (TRs, nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 3) are nuclear hormone receptors of the NR1A family, with diverse roles regulating macronutrient metabolism, cognition and cardiovascular homeostasis. TRs are activated by thyroxine (T4) and thyroid hormone (T3). Once activated by a ligand, the receptor acts as a transcription factor either as a monomer, homodimer or heterodimer with members of the retinoid X receptor family. NH-3 has been described as an antagonist at TRs with modest selectivity for TRβ 4.

Nomenclature Thyroid hormone receptor-α Thyroid hormone receptor-β
Systematic nomenclature NR1A1 NR1A2
HGNC, UniProt THRA, P10827 THRB, P10828
Rank order of potency T3 > T4 T3 > T4
Selective agonists (pKi) GC-1 (pKd 10.17) 2,5

Comments

An interaction with integrin αVβ3 has been suggested to underlie plasma membrane localization of TRs and non-genomic signalling 1. One splice variant, TRα2, lacks a functional DNA-binding domain and appears to act as a transcription suppressor.

Although radioligand binding assays have been described for these receptors, the radioligands are not commercially available.

1B. Retinoic acid receptors

Overview

Retinoic acid receptors (nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 8) are nuclear hormone receptors of the NR1B family activated by the vitamin A-derived agonists all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid, and the RAR-selective synthetic agonists TTNPB and adapalene.

Nomenclature Retinoic acid receptor-α Retinoic acid receptor-β Retinoic acid receptor-γ
Systematic nomenclature NR1B1 NR1B2 NR1B3
HGNC, UniProt RARA, P10276 RARB, P10826 RARG, P13631
Selective agonists (pKi) Ro 40-6055 7,11,18, BMS753 (8.7) 10 AC261066 (pEC50 7.9 – 8.1) 15, AC55649 (pEC50 6.5 – 7.3) 15 AHPN 16
Selective antagonists (pKi) Ro 41-5253 (pIC50 6.3 – 7.2) 6,12 MM 11253 13

Comments

Ro 41-5253 has been suggested to be a PPARγ agonist 17. LE135 is an antagonist with selectivity for RARα and RARβ compared with RARγ 14. 9 is a family-selective antagonist.

1C. Peroxisome proliferator-activated receptors

Overview

Peroxisome proliferator-activated receptors (PPARs, nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 33) are nuclear hormone receptors of the NR1C family, with diverse roles regulating lipid homeostasis, cellular differentiation, proliferation and the immune response. PPARs have many potential endogenous agonists 21,33, including 15-deoxy-Δ12,14-PGJ2, prostacyclin (PGI2), many fatty acids and their oxidation products, lysophosphatidic acid (LPA) 32, 13-HODE, 15S-HETE, Paz-PC, azelaoyl-PAF and leukotriene B4 (LTB4). bezafibrate acts as a non-selective agonist for the PPAR family 41. These receptors also bind hypolipidaemic drugs (PPARα) and anti-diabetic thiazolidinediones (PPARγ), as well as many non-steroidal anti-inflammatory drugs, such as sulindac and indomethacin. Once activated by a ligand, the receptor forms a heterodimer with members of the retinoid X receptor family and can act as a transcription factor. Although radioligand binding assays have been described for all three receptors, the radioligands are not commercially available. Commonly, receptor occupancy studies are conducted using fluorescent ligands and truncated forms of the receptor limited to the ligand binding domain.

Nomenclature Peroxisome proliferator-activated receptor-α Peroxisome proliferator-activated receptor-β/δ Peroxisome proliferator-activated receptor-γ
Systematic nomenclature NR1C1 NR1C2 NR1C3
HGNC, UniProt PPARA, Q07869 PPARD, Q03181 PPARG, P37231
Selective agonists (pKi) ciprofibrate, GW7647 (pEC50 8.2) 22,23, CP-775146 (pEC50 7.3) 28, pirinixic acid (pEC50 5.3) 41 GW501516 (pEC50 9.0) 35, GW0742X (pIC50 9.0) 25,39 rosiglitazone (pKd 7.4) 27,31,44, GW1929 (8.8) 22, CDDO (Partial agonist) (8.0) 40, troglitazone (5.8) 19, ciglitazone (pEC50 4.6) 27, troglitazone (pIC50 6.3) 27,44, pioglitazone (pIC50 6.2) 27,37,44
Selective antagonists (pKi) GW6471 (pIC50 6.6) 42 GSK0660 (pIC50 6.5) 38 T0070907 (9.0) 29, CDDO-Me (6.9) 40, GW9662 (Irreversible inhibition) (pIC50 8.1) 30

Comments

As with the estrogen receptor antagonists, many agents show tissue-selective efficacy (e.g. 20,34,36). Agonists with mixed activity at PPARα and PPARγ have also been described (e.g24,26,43).

1D. Rev-Erb receptors

Overview

Rev-erb receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 45) have yet to be officially paired with an endogenous ligand, but are thought to be activated by heme.

Nomenclature Rev-Erb-α Rev-Erb-β
Systematic nomenclature NR1D1 NR1D2
HGNC, UniProt NR1D1, P20393 NR1D2, Q14995
Endogenous agonists (pKi) heme (Selective) 48,49 heme (Selective) 48,49
Selective agonists (pKi) GSK4112 (pEC50 6.4) 46, GSK4112 (pIC50 5.6) 47
Selective antagonists (pKi) SR8278 (pIC50 6.5) 47

1F. Retinoic acid-related orphans

Overview

Retinoic acid receptor-related orphan receptors (ROR, nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 50) have yet to be assigned a definitive endogenous ligand, although RORα may be synthesized with a ‘captured’ agonist such as cholesterol 52,53.

Nomenclature RAR-related orphan receptor-α RAR-related orphan receptor-β RAR-related orphan receptor-γ
Systematic nomenclature NR1F1 NR1F2 NR1F3
HGNC, UniProt RORA, P35398 RORB, Q92753 RORC, P51449
Endogenous agonists (pKi) cholesterol (Selective) 53,54
Selective agonists (pKi) 7-hydroxycholesterol 51, cholesterol sulphate 51,53

Comments

all-trans-retinoic acid shows selectivity for RORβ within the ROR family 55. RORα has been suggested to be a nuclear receptor responding to melatonin 56.

1H. Liver X receptor-like receptors

Overview

Liver X and farnesoid X receptors (LXR and FXR, nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 62) are members of a steroid analogue-activated nuclear receptor subfamily (ENSFM00500000269785), which form heterodimers with members of the retinoid X receptor family. Endogenous ligands for LXRs include hydroxycholesterols (OHC), while FXRs appear to be activated by bile acids.

Nomenclature Farnesoid X receptor Farnesoid X receptor-β Liver X receptor-α Liver X receptor-β
Systematic nomenclature NR1H4 NR1H5 NR1H3 NR1H2
HGNC, UniProt NR1H4, Q96RI1 NR1H5P, - NR1H3, Q13133 NR1H2, P55055
Potency order chenodeoxycholic acid > lithocholic acid, deoxycholic acid 60,64 20S-hydroxycholesterol, 22R-hydroxycholesterol, 24(S)-hydroxycholesterol > 25-hydroxycholesterol, 27-hydroxycholesterol 59 20S-hydroxycholesterol, 22R-hydroxycholesterol, 24(S)-hydroxycholesterol > 25-hydroxycholesterol, 27-hydroxycholesterol 59
Selective agonists (pKi) GW4064 (pEC50 7.8) 61, ECDCA (pEC50 7.0) 65, fexaramine (pEC50 6.6) 58
Selective antagonists (pKi) guggulsterone (pIC50 5.7 – 6.0) 67
Endogenous agonists (pKi) lanosterol (pEC50 6.0 - Mouse) 63

Comments

T0901317 66 and GW3965 57 are synthetic agonists acting at both LXRα and LXRβ with less than 10-fold selectivity. NR1H5P (FXRβ) is a pseudogene in man, but active in the mouse.

1I. Vitamin D receptor-like receptors

Overview

Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 79) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR79.

Nomenclature Vitamin D receptor Pregnane X receptor Constitutive androstane receptor
Systematic nomenclature NR1I1 NR1I2 NR1I3
HGNC, UniProt VDR, P11473 NR1I2, O75469 NR1I3, Q14994
Endogenous agonists (pKi) 1,25-dihydroxyvitamin D3 (pKd 8.9 – 9.2) 68,71 17β-estradiol (Selective) 74
Selective agonists (pKi) EB1089 (pKd 9.57) 70,84 hyperforin (pEC50 7.6) 80,83, rifampicin (pEC50 5.5 – 6.0) 69,76, lovastatin (pEC50 5.3 – 6.0) 76, pregnanedione (pIC50 6.4) 74 TCPOBOP (pEC50 7.7 - Mouse) 82, CITCO (pEC50 7.3) 77
Selective antagonists (pKi) TEI-9647 78, ZK159222 (pIC50 7.5) 72,73
Comment clotrimazole 81 and T0901317 75 although acting at other sites, function as antagonists of the constitutive androstane receptor

2A. Hepatocyte nuclear factor-4 receptors

Overview

Hepatocyte nuclear factor-4 receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 85) have yet to be officially paired with an endogenous ligand, although linoleic acid has been described to activate HNF4α receptors.

Nomenclature Hepatocyte nuclear factor-4-α Hepatocyte nuclear factor-4-γ
Systematic nomenclature NR2A1 NR2A2
HGNC, UniProt HNF4A, P41235 HNF4G, Q14541
Endogenous agonists (pKi) linoleic acid (Selective) 87
Selective antagonists (pKi) BI6015 86

2B. Retinoid X receptors

Overview

Retinoid X receptors (nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 90) are NR2B family members activated by 9-cis-retinoic acid and the RXR-selective agonists bexarotene and LG100268, sometimes referred to as rexinoids. UVI3003 93 and HX531 89 have been described as a pan-RXR antagonists. These receptors form RXR–RAR heterodimers and RXR–RXR homodimers 88,92.

Nomenclature Retinoid X receptor-α Retinoid X receptor-β Retinoid X receptor-γ
Systematic nomenclature NR2B1 NR2B2 NR2B3
HGNC, UniProt RXRA, P19793 RXRB, P28702 RXRG, P48443
Selective agonists (pKi) CD3254 (pIC50 8.5) 91

2C. Testicular receptors

Overview

Testicular receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 94) have yet to be officially paired with an endogenous ligand, although testicular receptor 4 has been reported to respond to retinoids.

Nomenclature Testicular receptor 2 Testicular receptor 4
Systematic nomenclature NR2C1 NR2C2
HGNC, UniProt NR2C1, P13056 NR2C2, P49116
Endogenous agonists (pKi) all-trans-retinoic acid (Selective) 96, retinol (Selective) 96
Comment Forms a heterodimer with TR4; gene disruption appears without effect on testicular development or function 95 Forms a heterodimer with TR2

2E. Tailless-like receptors

Overview

Tailless-like receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 97) have yet to be officially paired with an endogenous ligand.

Nomenclature TLX PNR
Systematic nomenclature NR2E1 NR2E3
HGNC, UniProt NR2E1, Q9Y466 NR2E3, Q9Y5X4
Comment Gene disruption is associated with abnormal brain development 98,99

2F. COUP-TF-like receptors

Overview

COUP-TF-like receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 100) have yet to be officially paired with an endogenous ligand.

Nomenclature COUP-TF1 COUP-TF2 V-erbA-related gene
Systematic nomenclature NR2F1 NR2F2 NR2F6
HGNC, UniProt NR2F1, P10589 NR2F2, P24468 NR2F6, P10588
Comment Gene disruption is perinatally lethal 102 Gene disruption is embryonically lethal 101 Gene disruption impairs CNS development 103

3B. Estrogen-related receptors

Overview

Estrogen-related receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 104) have yet to be officially paired with an endogenous ligand.

Nomenclature Estrogen-related receptor-α Estrogen-related receptor-β Estrogen-related receptor-γ
Systematic nomenclature NR3B1 NR3B2 NR3B3
HGNC, UniProt ESRRA, P11474 ESRRB, O95718 ESRRG, P62508
Comment Activated by some dietary flavonoids 105; activated by the synthetic agonist GSK4716 108 and blocked by XCT790 106 May be activated by DY131 107 May be activated by DY131 107

4A. Nerve growth factor IB-like receptors

Overview

Nerve growth factor IB-like receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 110) have yet to be officially paired with an endogenous ligand.

Nomenclature Nerve Growth factor IB Nuclear receptor related 1 Neuron-derived orphan receptor 1
Systematic nomenclature NR4A1 NR4A2 NR4A3
HGNC, UniProt NR4A1, P22736 NR4A2, P43354 NR4A3, Q92570
Comment An endogenous agonist, cytosporone B, has been described 113, although structural analysis and molecular modelling has not identified a ligand binding site 109,111,112

5A. Fushi tarazu F1-like receptors

Overview

Fushi tarazu F1-like receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 114) have yet to be officially paired with an endogenous ligand.

Nomenclature Steroidogenic factor 1 Liver receptor homolog-1
Systematic nomenclature NR5A1 NR5A2
HGNC, UniProt NR5A1, Q13285 NR5A2, O00482
Comment Reported to be inhibited by AC45594 115 and SID7969543 116

6A. Germ cell nuclear factor receptors

Overview

Germ cell nuclear factor receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 117) have yet to be officially paired with an endogenous ligand.

Nomenclature Germ cell nuclear factor
Systematic nomenclature NR6A1
HGNC, UniProt NR6A1, Q15406

0B. DAX-like receptors

Overview

Dax-like receptors (nomenclature as agreed by NC-IUPHAR committee on nuclear hormone receptors 118) have yet to be officially paired with an endogenous ligand.

Nomenclature DAX1 SHP
Systematic nomenclature NR0B1 NR0B2
HGNC, UniProt NR0B1, P51843 NR0B2, Q15466

Steroid hormone receptors

Overview

Steroid hormone receptors (nomenclature as agreed by NC-IUPHAR Committee on Nuclear Receptors, 120,132) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3-hydroxysteroids (estrone and 17β-estradiol) and 3-ketosteroids (dihydrotestosterone [DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone). These receptors exist as dimers coupled with chaperone molecules (such as hsp90 (HSP90AB1, P08238) and immunophilin FKBP52:FKBP4, Q02790), which are shed on binding the steroid hormone. Although rapid signalling phenomena are observed 130,138, the principal signalling cascade appears to involve binding of the activated receptors to nuclear hormone response elements of the genome, with a 15-nucleotide consensus sequence AGAACAnnnTGTTCT (i.e. an inverted palindrome) as homo- or heterodimers. They also affect transcription by protein–protein interactions with other transcription factors, such as activator protein 1 (AP-1) and nuclear factor κB (NF-κB). Splice variants of each of these receptors can form functional or non-functional monomers that can dimerize to form functional or non-functional receptors. For example, alternative splicing of PR mRNA produces A and B monomers that combine to produce functional AA, AB and BB receptors with distinct characteristics 148.

A 7TM receptor responsive to estrogen (GPER1, Q99527, also known as GPR30, see 137) has been described. Human orthologues of 7TM ‘membrane progestin receptors’ (PAQR7, PAQR8 and PAQR5), initially discovered in fish 151,152, appear to localize to intracellular membranes and respond to ‘non-genomic’ progesterone analogues independently of G proteins 142.

3A. Estrogen receptors

Nomenclature Estrogen receptor-α Estrogen receptor-β
Systematic nomenclature NR3A1 NR3A2
HGNC, UniProt ESR1, P03372 ESR2, Q92731
Selective agonists (pKi) PPT (9.64) 128,143 ERB 041 133, diarylpropionitril (8.6) 135,143, WAY200070 (pIC50 8.52 – 9.0) 133
Selective antagonists (pKi) methyl-piperidino-pyrazole (8.57) 145 PHTPP 119, R,R-THC (8.44) 134,146

Comments

R,R-THC exhibits partial agonist activity at ERα 134,146. Estrogen receptors may be blocked non-selectively by tamoxifen and raloxifene and labelled by [3H]17β-estradiol and [3H]tamoxifen. Many agents thought initially to be antagonists at estrogen receptors appear to have tissue-specific efficacy (e.g. tamoxifen is an antagonist at estrogen receptors in the breast, but is an agonist at estrogen receptors in the uterus), hence the descriptor SERM (selective estrogen receptor modulator) or SnuRM (selective nuclear receptor modulator). Y134 has been suggested to be an ERα-selective estrogen receptor modulator 136.

3C. 3-Ketosteroid receptors

Nomenclature Androgen receptor Glucocorticoid receptor Mineralocorticoid receptor Progesterone receptor
Systematic nomenclature NR3C4 NR3C1 NR3C2 NR3C3
HGNC, UniProt AR, P10275 NR3C1, P04150 NR3C2, P08235 PGR, P06401
Rank order of potency dihydrotestosterone>testosterone cortisol,corticosterone>>aldosterone,deoxycortisone 139 corticosterone,cortisol,aldosterone,progesterone 139 progesterone
Endogenous agonists (pKi) dihydrotestosterone (pKd 9.3) 147 aldosterone (Selective) (pIC50 9.8 – 10.0) 126,139 progesterone (Selective)
Selective agonists (pKi) methyltrienolone (pEC50 < 5.0) 149, mibolerone (pIC50 8.96) 124 fluticasone, RU26988, RU28362 levonorgestrel 140, ORG2058
Selective antagonists (pKi) hydroxyflutamide (pEC50 6.6) 149, PF0998425 (pIC50 7.1 – 7.5) 131, nilutamide (pIC50 7.07 – 7.12) 141 onapristone, ZK112993, mifepristone (pKd 9.4) 125,139 onapristone, RU28318, ZK112993, eplerenone (pIC50 1.0) 121,127 mifepristone, onapristone, ZK112993
Radioligands (Kd) [3H]dihydrotestosterone (Agonist), [3H]mibolerone (Agonist), [3H]R1881 (Agonist) [3H]dexamethasone (Agonist) [3H]aldosterone (Agonist) (3x10-10 – 4x10-10 M - Rat) 123,144 [3H]ORG2058 (Agonist)

Comments

[3H]dexamethasone also binds to MR in vitro. PR antagonists have been suggested to subdivide into Type I (e.g. onapristone) and Type II (e.g. ZK112993) groups. These groups appear to promote binding of PR to DNA with different efficacies and evoke distinct conformational changes in the receptor, leading to a transcription-neutral complex 122,129. Mutations in AR underlie testicular feminization and androgen insensibility syndromes, spinal and bulbar muscular atrophy (Kennedy's disease).

Further reading

  1. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bianco AC. Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology. 2011;152:3306–3311. doi: 10.1210/en.2011-1104. [PMID:21712363] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122:3035–3043. doi: 10.1172/JCI60047. [PMID:22945636] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flamant F. Baxter JD. Forrest D. Refetoff S. Samuels H. Scanlan TS. Vennström B. Samarut J. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev. 2006;58:705–711. doi: 10.1124/pr.58.4.3. [PMID:17132849] [DOI] [PubMed] [Google Scholar]
  4. Pramfalk C. Pedrelli M. Parini P. Role of thyroid receptor β in lipid metabolism. Biochim Biophys Acta. 2011;1812:929–937. doi: 10.1016/j.bbadis.2010.12.019. [PMID:21194564] [DOI] [PubMed] [Google Scholar]
  5. Sirakov M. Plateroti M. The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta. 2011;1812:938–946. doi: 10.1016/j.bbadis.2010.12.020. [PMID:21194566] [DOI] [PubMed] [Google Scholar]
  6. Tancevski I. Rudling M. Eller P. Thyromimetics: a journey from bench to bed-side. Pharmacol Ther. 2011;131:33–39. doi: 10.1016/j.pharmthera.2011.04.003. [PMID:21504761] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bour G. Lalevée S. Rochette-Egly C. Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoic acid receptors. Trends Cell Biol. 2007;17:302–309. doi: 10.1016/j.tcb.2007.04.003. [PMID:17467991] [DOI] [PubMed] [Google Scholar]
  2. Duong V. Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 2011;1812:1023–1031. doi: 10.1016/j.bbadis.2010.10.007. [PMID:20970498] [DOI] [PubMed] [Google Scholar]
  3. Germain P. Chambon P. Eichele G. Evans RM. Lazar MA. Leid M. De Lera AR. Lotan R. Mangelsdorf DJ. Gronemeyer H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev. 2006;58:712–725. doi: 10.1124/pr.58.4.4. [PMID:17132850] [DOI] [PubMed] [Google Scholar]
  4. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–765. doi: 10.1038/nrn2212. [PMID:17882253] [DOI] [PubMed] [Google Scholar]
  5. Mark M. Ghyselinck NB. Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451–480. doi: 10.1146/annurev.pharmtox.46.120604.141156. [PMID:16402912] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Huang JV. Greyson CR. Schwartz GG. PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res. 2012;53:1738–1754. doi: 10.1194/jlr.R024505. [PMID:22685322] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Michalik L. Auwerx J. Berger JP. Chatterjee VK. Glass CK. Gonzalez FJ. Grimaldi PA. Kadowaki T. Lazar MA. O'Rahilly S. Palmer CN. Plutzky J. Reddy JK. Spiegelman BM. Staels B. Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726–741. doi: 10.1124/pr.58.4.5. [PMID:17132851] [DOI] [PubMed] [Google Scholar]
  3. Michalik L. Wahli W. PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Res. 2008;2008:134059. doi: 10.1155/2008/134059. [PMID:19125181] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Peters JM. Shah YM. Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer. 2012;12:181–195. doi: 10.1038/nrc3214. [PMID:22318237] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pirat C. Farce A. Lebègue N. Renault N. Furman C. Millet R. Yous S. Speca S. Berthelot P. Desreumaux P, et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J Med Chem. 2012;55:4027–4061. doi: 10.1021/jm101360s. [PMID:22260081] [DOI] [PubMed] [Google Scholar]
  6. Varga T. Czimmerer Z. Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007–1022. doi: 10.1016/j.bbadis.2011.02.014. [PMID:21382489] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Youssef J. Badr M. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities. Br J Pharmacol. 2011;164:68–82. doi: 10.1111/j.1476-5381.2011.01383.x. [PMID:21449912] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Duez H. Staels B. Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol. 2009;107:1972–1980. doi: 10.1152/japplphysiol.00570.2009. [PMID:19696364] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  4. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Phelan CA. Gampe RT. Lambert MH. Parks DJ. Montana V. Bynum J. Broderick TM. Hu X. Williams SP. Nolte RT. Lazar MA. Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat Struct Mol Biol. 2010;17:808–814. doi: 10.1038/nsmb.1860. [PMID:20581824] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Yin L. Wu N. Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal. 2010;8:e001. doi: 10.1621/nrs.08001. [PMID:20414452] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]

Further reading

  1. A-González N. Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta. 2011;1812:982–994. doi: 10.1016/j.bbadis.2010.12.015. [PMID:21193033] [DOI] [PubMed] [Google Scholar]
  2. Calkin AC. Tontonoz P. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1513–1518. doi: 10.1161/ATVBAHA.109.191197. [PMID:20631351] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen WD. Wang YD. Meng Z. Zhang L. Huang W. Nuclear bile acid receptor FXR in the hepatic regeneration. Biochim Biophys Acta. 2011;1812:888–892. doi: 10.1016/j.bbadis.2010.12.006. [PMID:21167938] [DOI] [PubMed] [Google Scholar]
  4. Claudel T. Zollner G. Wagner M. Trauner M. Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta. 2011;1812:867–878. doi: 10.1016/j.bbadis.2010.12.021. [PMID:21194565] [DOI] [PubMed] [Google Scholar]
  5. El-Hajjaji FZ. Oumeddour A. Pommier AJ. Ouvrier A. Viennois E. Dufour J. Caira F. Drevet JR. Volle DH. Baron S, et al. Liver X receptors, lipids and their reproductive secrets in the male. Biochim Biophys Acta. 2011;1812:974–981. doi: 10.1016/j.bbadis.2011.02.004. [PMID:21334438] [DOI] [PubMed] [Google Scholar]
  6. Gadaleta RM. Mil SW. Oldenburg B. Siersema PD. Klomp LW. Erpecum KJ. Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta. 2010;1801:683–692. doi: 10.1016/j.bbalip.2010.04.006. [PMID:20399894] [DOI] [PubMed] [Google Scholar]
  7. Gardmo C. Tamburro A. Modica S. Moschetta A. Proteomics for the discovery of nuclear bile acid receptor FXR targets. Biochim Biophys Acta. 2011;1812:836–841. doi: 10.1016/j.bbadis.2011.03.009. [PMID:21439373] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hageman J. Herrema H. Groen AK. Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1519–1528. doi: 10.1161/ATVBAHA.109.197897. [PMID:20631352] [DOI] [PubMed] [Google Scholar]
  9. Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta. 2011;1812:842–850. doi: 10.1016/j.bbadis.2010.11.011. [PMID:21130162] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsubara T. Li F. Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol. 2013;368:17–29. doi: 10.1016/j.mce.2012.05.004. [PMID:22609541] [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mencarelli A. Fiorucci S. FXR an emerging therapeutic target for the treatment of atherosclerosis. J Cell Mol Med. 2010;14:79–92. doi: 10.1111/j.1582-4934.2009.00997.x. [PMID:20041971] [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moore DD. Kato S. Xie W. Mangelsdorf DJ. Schmidt DR. Xiao R. Kliewer SA. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. [PMID:17132852] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bikle DD. Vitamin D: an ancient hormone. Exp Dermatol. 2011;20:7–13. doi: 10.1111/j.1600-0625.2010.01202.x. [PMID:21197695] [DOI] [PubMed] [Google Scholar]
  2. Campbell FC. Xu H. El-Tanani M. Crowe P. Bingham V. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. Biochem Pharmacol. 2010;79:1–9. doi: 10.1016/j.bcp.2009.09.005. [PMID:19737544] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y. Tang Y. Guo C. Wang J. Boral D. Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012;83:1112–1126. doi: 10.1016/j.bcp.2012.01.030. [PMID:22326308] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng J. Shah YM. Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci. 2012;33:323–330. doi: 10.1016/j.tips.2012.03.003. [PMID:22609277] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ihunnah CA. Jiang M. Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta. 2011;1812:956–963. doi: 10.1016/j.bbadis.2011.01.014. [PMID:21295138] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kachaylo EM. Pustylnyak VO. Lyakhovich VV. Gulyaeva LF. Constitutive androstane receptor (CAR) is a xenosensor and target for therapy. Biochemistry Mosc. 2011;76:1087–1097. doi: 10.1134/S0006297911100026. [PMID:22098234] [DOI] [PubMed] [Google Scholar]
  7. Krishnan AV. Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 2011;51:311–336. doi: 10.1146/annurev-pharmtox-010510-100611. [PMID:20936945] [DOI] [PubMed] [Google Scholar]
  8. Moore DD. Kato S. Xie W. Mangelsdorf DJ. Schmidt DR. Xiao R. Kliewer SA. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. [PMID:17132852] [DOI] [PubMed] [Google Scholar]
  9. Plum LA. DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9:941–955. doi: 10.1038/nrd3318. [PMID:21119732] [DOI] [PubMed] [Google Scholar]
  10. Staudinger JL. Woody S. Sun M. Cui W. Nuclear-receptor-mediated regulation of drug- and bile-acid-transporter proteins in gut and liver. Drug Metab Rev. 2013;45:48–59. doi: 10.3109/03602532.2012.748793. [PMID:23330541] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  3. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hwang-Verslues WW. Sladek FM. HNF4α–role in drug metabolism and potential drug target? Curr Opin Pharmacol. 2010;10:698–705. doi: 10.1016/j.coph.2010.08.010. [PMID:20833107] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bour G. Lalevée S. Rochette-Egly C. Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoic acid receptors. Trends Cell Biol. 2007;17:302–309. doi: 10.1016/j.tcb.2007.04.003. [PMID:17467991] [DOI] [PubMed] [Google Scholar]
  2. Duong V. Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 2011;1812:1023–1031. doi: 10.1016/j.bbadis.2010.10.007. [PMID:20970498] [DOI] [PubMed] [Google Scholar]
  3. Germain P. Chambon P. Eichele G. Evans RM. Lazar MA. Leid M. De Lera AR. Lotan R. Mangelsdorf DJ. Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev. 2006;58:760–772. doi: 10.1124/pr.58.4.7. [PMID:17132853] [DOI] [PubMed] [Google Scholar]
  4. Lefebvre P. Benomar Y. Staels B. Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab. 2010;21:676–683. doi: 10.1016/j.tem.2010.06.009. [PMID:20674387] [DOI] [PubMed] [Google Scholar]
  5. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–765. doi: 10.1038/nrn2212. [PMID:17882253] [DOI] [PubMed] [Google Scholar]
  6. Mark M. Ghyselinck NB. Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451–480. doi: 10.1146/annurev.pharmtox.46.120604.141156. [PMID:16402912] [DOI] [PubMed] [Google Scholar]
  7. Pérez E. Bourguet W. Gronemeyer H. Lera AR. Modulation of RXR function through ligand design. Biochim Biophys Acta. 2011 doi: 10.1016/j.bbalip.2011.04.003. [Epub ahead of print]. [PMID:21515403] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Duez H. Staels B. Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol. 2009;107:1972–1980. doi: 10.1152/japplphysiol.00570.2009. [PMID:19696364] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  4. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Phelan CA. Gampe RT. Lambert MH. Parks DJ. Montana V. Bynum J. Broderick TM. Hu X. Williams SP. Nolte RT. Lazar MA. Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat Struct Mol Biol. 2010;17:808–814. doi: 10.1038/nsmb.1860. [PMID:20581824] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schimmer BP. White PC. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol Endocrinol. 2010;24:1322–1337. doi: 10.1210/me.2009-0519. [PMID:20203099] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Yin L. Wu N. Lazar MA. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal. 2010;8:e001. doi: 10.1621/nrs.08001. [PMID:20414452] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zhang Y. Hagedorn CH. Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta. 2011;1812:893–908. doi: 10.1016/j.bbadis.2010.10.006. [PMID:20970497] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zhao Y. Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 2010;30:1535–1541. doi: 10.1161/ATVBAHA.109.191163. [PMID:20631354] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  3. Gui H. Li ML. Tsai CC. A tale of tailless. Dev Neurosci. 2011;33:1–13. doi: 10.1159/000321585. [PMID:21124006] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  3. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lin FJ. Qin J. Tang K. Tsai SY. Tsai MJ. Coup d'Etat: an orphan takes control. Endocr Rev. 2011;32:404–421. doi: 10.1210/er.2010-0021. [PMID:21257780] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Deblois G. Giguère V. Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta. 2011;1812:1032–1040. doi: 10.1016/j.bbadis.2010.12.009. [PMID:21172432] [DOI] [PubMed] [Google Scholar]
  3. Deblois G. Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer. 2013;13:27–36. doi: 10.1038/nrc3396. [PMID:23192231] [DOI] [PubMed] [Google Scholar]
  4. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  5. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hwang-Verslues WW. Sladek FM. HNF4α–role in drug metabolism and potential drug target? Curr Opin Pharmacol. 2010;10:698–705. doi: 10.1016/j.coph.2010.08.010. [PMID:20833107] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  3. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. McMorrow JP. Murphy EP. Inflammation: a role for NR4A orphan nuclear receptors? Biochem Soc Trans. 2011;39:688–693. doi: 10.1042/BST0390688. [PMID:21428963] [DOI] [PubMed] [Google Scholar]
  5. Mohan HM. Aherne CM. Rogers AC. Baird AW. Winter DC. Murphy EP. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res. 2012;18:3223–3228. doi: 10.1158/1078-0432.CCR-11-2953. [PMID:22566377] [DOI] [PubMed] [Google Scholar]
  6. Pearen MA. Muscat GE. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol. 2010;24:1891–1903. doi: 10.1210/me.2010-0015. [PMID:20392876] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tiel CM. Vries CJ. NR4All in the vessel wall. J Steroid Biochem Mol Biol. 2012;130:186–193. doi: 10.1016/j.jsbmb.2011.01.010. [PMID:21277978] [DOI] [PubMed] [Google Scholar]
  9. Zhao Y. Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 2010;30:1535–1541. doi: 10.1161/ATVBAHA.109.191163. [PMID:20631354] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Büdefeld T. Tobet SA. Majdic G. Steroidogenic factor 1 and the central nervous system. J Neuroendocrinol. 2012;24:225–235. doi: 10.1111/j.1365-2826.2011.02174.x. [PMID:21668533] [DOI] [PubMed] [Google Scholar]
  3. El-Khairi R. Martinez-Aguayo A. Ferraz Souza B. Lin L. Achermann JC. Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function. Endocr Dev. 2011;20:38–46. doi: 10.1159/000321213. [PMID:21164257] [DOI] [PubMed] [Google Scholar]
  4. Fernandez-Marcos PJ. Auwerx J. Schoonjans K. Emerging actions of the nuclear receptor LRH-1 in the gut. Biochim Biophys Acta. 2011;1812:947–955. doi: 10.1016/j.bbadis.2010.12.010. [PMID:21194563] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferraz Souza B. Lin L. Achermann JC. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol Cell Endocrinol. 2011;336:198–205. doi: 10.1016/j.mce.2010.11.006. [PMID:21078366] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  7. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lazarus KA. Wijayakumara D. Chand AL. Simpson ER. Clyne CD. Therapeutic potential of Liver Receptor Homolog-1 modulators. J Steroid Biochem Mol Biol. 2012;130:138–146. doi: 10.1016/j.jsbmb.2011.12.017. [PMID:22266285] [DOI] [PubMed] [Google Scholar]
  9. Młynarczuk J. Rękawiecki R. The role of the orphan receptor SF-1 in the development and function of the ovary. Reprod Biol. 2010;10:177–193. [PMID:21113200] [PubMed] [Google Scholar]
  10. Schimmer BP. White PC. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol Endocrinol. 2010;24:1322–1337. doi: 10.1210/me.2009-0519. [PMID:20203099] [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  3. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benoit G. Cooney A. Giguere V. Ingraham H. Lazar M. Muscat G. Perlmann T. Renaud JP. Schwabe J. Sladek F. Tsai MJ. Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID:17132856] [DOI] [PubMed] [Google Scholar]
  2. Chanda D. Park JH. Choi HS. Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Endocr J. 2008;55:253–268. doi: 10.1507/endocrj.k07e-103. [PMID:17984569] [DOI] [PubMed] [Google Scholar]
  3. Ehrlund A. Treuter E. Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. J Steroid Biochem Mol Biol. 2012;130:169–179. doi: 10.1016/j.jsbmb.2011.04.007. [PMID:21550402] [DOI] [PubMed] [Google Scholar]
  4. El-Khairi R. Martinez-Aguayo A. Ferraz Souza B. Lin L. Achermann JC. Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function. Endocr Dev. 2011;20:38–46. doi: 10.1159/000321213. [PMID:21164257] [DOI] [PubMed] [Google Scholar]
  5. Germain P. Staels B. Dacquet C. Spedding M. Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev. 2006;58:685–704. doi: 10.1124/pr.58.4.2. [PMID:17132848] [DOI] [PubMed] [Google Scholar]
  6. Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–272. doi: 10.1146/annurev-physiol-021909-135917. [PMID:20148675] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Młynarczuk J. Rękawiecki R. The role of the orphan receptor SF-1 in the development and function of the ovary. Reprod Biol. 2010;10:177–193. [PMID:21113200] [PubMed] [Google Scholar]
  8. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334:3–13. doi: 10.1016/j.mce.2010.06.018. [PMID:20615454] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zhang Y. Hagedorn CH. Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta. 2011;1812:893–908. doi: 10.1016/j.bbadis.2010.10.006. [PMID:20970497] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Blaustein JD. Progesterone and progestin receptors in the brain: the neglected ones. Endocrinology. 2008;149:2737–2738. doi: 10.1210/en.2008-0395. [PMID:18436712] [DOI] [PubMed] [Google Scholar]
  2. Briet M. Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6:261–273. doi: 10.1038/nrneph.2010.30. [PMID:20234356] [DOI] [PubMed] [Google Scholar]
  3. Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol Sci. 2009;30:212–222. doi: 10.1016/j.tips.2008.12.006. [PMID:19299024] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Callewaert F. Boonen S. Vanderschueren D. Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol Metab. 2010;21:89–95. doi: 10.1016/j.tem.2009.09.002. [PMID:19837603] [DOI] [PubMed] [Google Scholar]
  5. Chen Y. Sawyers CL. Scher HI. Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol. 2008;8:440–448. doi: 10.1016/j.coph.2008.07.005. [PMID:18674639] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahlman-Wright K. Cavailles V. Fuqua SA. Jordan VC. Katzenellenbogen JA. Korach KS. Maggi A. Muramatsu M. Parker MG. Gustafsson JA. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006;58:773–781. doi: 10.1124/pr.58.4.8. [PMID:17132854] [DOI] [PubMed] [Google Scholar]
  7. Feldman RD. Gros R. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways. Br J Pharmacol. 2011;163:1163–1169. doi: 10.1111/j.1476-5381.2011.01366.x. [PMID:21545416] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gross KL. Cidlowski JA. Tissue-specific glucocorticoid action: a family affair. Trends Endocrinol Metab. 2008;19:331–339. doi: 10.1016/j.tem.2008.07.009. [PMID:18805703] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hadoke PW. Iqbal J. Walker BR. Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol. 2009;156:689–712. doi: 10.1111/j.1476-5381.2008.00047.x. [PMID:19239478] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Handelsman DJ. Indirect androgen doping by oestrogen blockade in sports. Br J Pharmacol. 2008;154:598–605. doi: 10.1038/bjp.2008.150. [PMID:18500381] [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joëls M. Karst H. DeRijk R. Kloet ER. The coming out of the brain mineralocorticoid receptor. Trends Neurosci. 2008;31:1–7. doi: 10.1016/j.tins.2007.10.005. [PMID:18063498] [DOI] [PubMed] [Google Scholar]
  12. Kellner M. Wiedemann K. Mineralocorticoid receptors in brain, in health and disease: possibilities for new pharmacotherapy. Eur J Pharmacol. 2008;583:372–378. doi: 10.1016/j.ejphar.2007.07.072. [PMID:18272147] [DOI] [PubMed] [Google Scholar]
  13. Kerkhofs S. Denayer S. Haelens A. Claessens F. Androgen receptor knockout and knock-in mouse models. J Mol Endocrinol. 2009;42:11–17. doi: 10.1677/JME-08-0122. [PMID:18923000] [DOI] [PubMed] [Google Scholar]
  14. Lange CA. Gioeli D. Hammes SR. Marker PC. Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer. Annu Rev Physiol. 2007;69:171–199. doi: 10.1146/annurev.physiol.69.031905.160319. [PMID:17037979] [DOI] [PubMed] [Google Scholar]
  15. Levin ER. Rapid signaling by steroid receptors. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1425–R1430. doi: 10.1152/ajpregu.90605.2008. [PMID:18784332] [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu NZ. Wardell SE. Burnstein KL. Defranco D. Fuller PJ. Giguere V. Hochberg RB. McKay L. Renoir JM. Weigel NL. Wilson EM. McDonnell DP. Cidlowski JA. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 2006;58:782–797. doi: 10.1124/pr.58.4.9. [PMID:17132855] [DOI] [PubMed] [Google Scholar]
  17. Matsumoto T. Shiina H. Kawano H. Sato T. Kato S. Androgen receptor functions in male and female physiology. J Steroid Biochem Mol Biol. 2008;109:236–241. doi: 10.1016/j.jsbmb.2008.03.023. [PMID:18434134] [DOI] [PubMed] [Google Scholar]
  18. Mohler ML. Bohl CE. Jones A. Coss CC. Narayanan R. He Y. Hwang DJ. Dalton JT. Miller DD. Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 2009;52:3597–3617. doi: 10.1021/jm900280m. [PMID:19432422] [DOI] [PubMed] [Google Scholar]
  19. Pippal JB. Fuller PJ. Structure-function relationships in the mineralocorticoid receptor. J Mol Endocrinol. 2008;41:405–413. doi: 10.1677/JME-08-0093. [PMID:18805937] [DOI] [PubMed] [Google Scholar]
  20. Prossnitz ER. Arterburn JB. Smith HO. Oprea TI. Sklar LA. Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165–190. doi: 10.1146/annurev.physiol.70.113006.100518. [PMID:18271749] [DOI] [PubMed] [Google Scholar]
  21. Schumacher M. Sitruk-Ware R. De Nicola AF. Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol. 2008;8:740–746. doi: 10.1016/j.coph.2008.10.002. [PMID:18929681] [DOI] [PubMed] [Google Scholar]
  22. Simons SS. Glucocorticoid receptor cofactors as therapeutic targets. Curr Opin Pharmacol. 2010;10:613–619. doi: 10.1016/j.coph.2010.08.001. [PMID:20801081] [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taplin ME. Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol. 2007;4:236–244. doi: 10.1038/ncponc0765. [PMID:17392714] [DOI] [PubMed] [Google Scholar]
  24. Weiser MJ. Foradori CD. Handa RJ. Estrogen receptor beta in the brain: from form to function. Brain Res Rev. 2008;57:309–320. doi: 10.1016/j.brainresrev.2007.05.013. [PMID:17662459] [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woolley CS. Acute effects of estrogen on neuronal physiology. Annu Rev Pharmacol Toxicol. 2007;47:657–680. doi: 10.1146/annurev.pharmtox.47.120505.105219. [PMID:16918306] [DOI] [PubMed] [Google Scholar]

References

  • 1.Bergh JJ, et al. Endocrinology. 2005;146:2864–2871. doi: 10.1210/en.2005-0102. [PMID: 15802494 ] [DOI] [PubMed] [Google Scholar]
  • 2.Chiellini G, et al. Chem Biol. 1998;5:299–306. doi: 10.1016/s1074-5521(98)90168-5. [PMID: 9653548 ] [DOI] [PubMed] [Google Scholar]
  • 3.Flamant F, et al. Pharmacol Rev. 2006;58:705–711. doi: 10.1124/pr.58.4.3. [PMID: 17132849 ] [DOI] [PubMed] [Google Scholar]
  • 4.Nguyen NH, et al. J Med Chem. 2002;45:3310–3320. doi: 10.1021/jm0201013. [PMID: 12109914 ] [DOI] [PubMed] [Google Scholar]
  • 5.Sharma SK, et al. Proc Natl Acad Sci USA. 1977;74:3365–3369. doi: 10.1073/pnas.74.8.3365. [PMID: 269396 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Apfel C, et al. Proc Natl Acad Sci USA. 1992;89:7129–7133. doi: 10.1073/pnas.89.15.7129. [PMID: 1323127 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Delescluse C, et al. Mol Pharmacol. 1991;40:556–562. [PMID: 1656191 ] [PubMed] [Google Scholar]
  • 8.Germain P, et al. Pharmacol Rev. 2006;58:712–725. doi: 10.1124/pr.58.4.4. [PMID: 17132850 ] [DOI] [PubMed] [Google Scholar]
  • 9.Germain P, et al. Chem Biol. 2009;16:479–489. doi: 10.1016/j.chembiol.2009.03.008. [PMID: 19477412 ] [DOI] [PubMed] [Google Scholar]
  • 10.Géhin M, et al. Chem Biol. 1999;6:519–529. doi: 10.1016/S1074-5521(99)80084-2. [PMID: 10421757 ] [DOI] [PubMed] [Google Scholar]
  • 11.Kagechika H, et al. J Med Chem. 1988;31:2182–2192. doi: 10.1021/jm00119a021. [PMID: 3184125 ] [DOI] [PubMed] [Google Scholar]
  • 12.Keidel S, et al. Mol Cell Biol. 1994;14:287–298. doi: 10.1128/mcb.14.1.287. [PMID: 8264595 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Le Q, et al. Oncogene. 2000;19:1457–1465. doi: 10.1038/sj.onc.1203436. [PMID: 10723137 ] [DOI] [PubMed] [Google Scholar]
  • 14.Li E. Mol Cell Biochem. 1999;192:105–108. [PMID: 10331664 ] [PubMed] [Google Scholar]
  • 15.Lund BW, et al. J Med Chem. 2005;48:7517–7519. doi: 10.1021/jm050891r. [PMID: 16302793 ] [DOI] [PubMed] [Google Scholar]
  • 16.Martin B, et al. Skin Pharmacol. 1992;5:57–65. doi: 10.1159/000211018. [PMID: 1315557 ] [DOI] [PubMed] [Google Scholar]
  • 17.Schupp M, et al. Mol Pharmacol. 2007;71:1251–1257. doi: 10.1124/mol.106.033662. [PMID: 17290005 ] [DOI] [PubMed] [Google Scholar]
  • 18.Thacher SM, et al. Curr Pharm Des. 2000;6:25–58. doi: 10.2174/1381612003401415. [PMID: 10637371 ] [DOI] [PubMed] [Google Scholar]
  • 19.Berger J, et al. Endocrinology. 1996;137:4189–4195. doi: 10.1210/endo.137.10.8828476. [PMID: 8828476 ] [DOI] [PubMed] [Google Scholar]
  • 20.Bishop-Bailey D, et al. Br J Pharmacol. 2000;131:651–654. doi: 10.1038/sj.bjp.0703628. [PMID: 11030710 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bishop-Bailey D, Wray J. Prostaglandins Other Lipid Mediat. 2003;71:1–22. doi: 10.1016/s0090-6980(03)00003-0. [PMID: 12749590 ] [DOI] [PubMed] [Google Scholar]
  • 22.Brown KK, et al. Diabetes. 1999;48:1415–1424. doi: 10.2337/diabetes.48.7.1415. [PMID: 10389847 ] [DOI] [PubMed] [Google Scholar]
  • 23.Brown PJ, et al. Bioorg Med Chem Lett. 2001;11:1225–1227. doi: 10.1016/s0960-894x(01)00188-3. [PMID: 11354382 ] [DOI] [PubMed] [Google Scholar]
  • 24.Doebber TW, et al. Biochem Biophys Res Commun. 2004;318:323–328. doi: 10.1016/j.bbrc.2004.04.032. [PMID: 15120604 ] [DOI] [PubMed] [Google Scholar]
  • 25.Graham TL, et al. Atherosclerosis. 2005;181:29–37. doi: 10.1016/j.atherosclerosis.2004.12.028. [PMID: 15939051 ] [DOI] [PubMed] [Google Scholar]
  • 26.Guo Q, et al. Endocrinology. 2004;145:1640–1648. doi: 10.1210/en.2003-1270. [PMID: 14701675 ] [DOI] [PubMed] [Google Scholar]
  • 27.Henke BR, et al. J Med Chem. 1998;41:5020–5036. doi: 10.1021/jm9804127. [PMID: 9836620 ] [DOI] [PubMed] [Google Scholar]
  • 28.Kane CD, et al. Mol Pharmacol. 2009;75:296–306. doi: 10.1124/mol.108.051656. [PMID: 18971326 ] [DOI] [PubMed] [Google Scholar]
  • 29.Lee G, et al. J Biol Chem. 2002;277:19649–19657. doi: 10.1074/jbc.M200743200. [PMID: 11877444 ] [DOI] [PubMed] [Google Scholar]
  • 30.Leesnitzer LM, et al. Biochemistry. 2002;41:6640–6650. doi: 10.1021/bi0159581. [PMID: 12022867 ] [DOI] [PubMed] [Google Scholar]
  • 31.Lehmann JM, et al. J Biol Chem. 1997;272:3406–3410. doi: 10.1074/jbc.272.6.3406. [PMID: 9013583 ] [DOI] [PubMed] [Google Scholar]
  • 32.McIntyre TM, et al. Proc Natl Acad Sci USA. 2003;100:131–136. doi: 10.1073/pnas.0135855100. [PMID: 12502787 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Michalik L, et al. Pharmacol Rev. 2006;58:726–741. doi: 10.1124/pr.58.4.5. [PMID: 17132851 ] [DOI] [PubMed] [Google Scholar]
  • 34.Nakamuta M, et al. Cell Biol Int. 2002;26:235–241. doi: 10.1006/cbir.2001.0838. [PMID: 11991651 ] [DOI] [PubMed] [Google Scholar]
  • 35.Oliver WR, et al. Proc Natl Acad Sci USA. 2001;98:5306–5311. doi: 10.1073/pnas.091021198. [PMID: 11309497 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Rocchi S, et al. Mol Cell. 2001;8:737–747. doi: 10.1016/s1097-2765(01)00353-7. [PMID: 11684010 ] [DOI] [PubMed] [Google Scholar]
  • 37.Sakamoto J, et al. Biochem Biophys Res Commun. 2000;278:704–711. doi: 10.1006/bbrc.2000.3868. [PMID: 11095972 ] [DOI] [PubMed] [Google Scholar]
  • 38.Shearer BG, et al. Mol Endocrinol. 2008;22:523–529. doi: 10.1210/me.2007-0190. [PMID: 17975020 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Sznaidman ML, et al. Bioorg Med Chem Lett. 2003;13:1517–1521. doi: 10.1016/s0960-894x(03)00207-5. [PMID: 12699745 ] [DOI] [PubMed] [Google Scholar]
  • 40.Wang Y, et al. Mol Endocrinol. 2000;14:1550–1556. doi: 10.1210/mend.14.10.0545. [PMID: 11043571 ] [DOI] [PubMed] [Google Scholar]
  • 41.Willson TM, et al. J Med Chem. 2000;43:527–550. doi: 10.1021/jm990554g. [PMID: 10691680 ] [DOI] [PubMed] [Google Scholar]
  • 42.Xu HE, et al. Nature. 2002;415:813–817. doi: 10.1038/415813a. [PMID: 11845213 ] [DOI] [PubMed] [Google Scholar]
  • 43.Xu Y, et al. J Med Chem. 2004;47:2422–2425. doi: 10.1021/jm0342616. [PMID: 15115385 ] [DOI] [PubMed] [Google Scholar]
  • 44.Young PW, et al. J Pharmacol Exp Ther. 1998;284:751–759. [PMID: 9454824 ] [PubMed] [Google Scholar]
  • 45.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 46.Grant D, et al. ACS Chem Biol. 2010;5:925–932. doi: 10.1021/cb100141y. [PMID: 20677822 ] [DOI] [PubMed] [Google Scholar]
  • 47.Kojetin D, et al. ACS Chem Biol. 2010 [Epub ahead of print]. [PMID: 21043485 ] [Google Scholar]
  • 48.Raghuram S, et al. Nat Struct Mol Biol. 2007;14:1207–1213. doi: 10.1038/nsmb1344. [PMID: 18037887 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Yin L, et al. Science. 2007;318:1786–1789. doi: 10.1126/science.1150179. [PMID: 18006707 ] [DOI] [PubMed] [Google Scholar]
  • 50.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 51.Bitsch F, et al. Anal Biochem. 2003;323:139–149. doi: 10.1016/j.ab.2003.08.029. [PMID: 14622968 ] [DOI] [PubMed] [Google Scholar]
  • 52.Kallen J, et al. J Biol Chem. 2004;279:14033–14038. doi: 10.1074/jbc.M400302200. [PMID: 14722075 ] [DOI] [PubMed] [Google Scholar]
  • 53.Kallen JA, et al. Structure. 2002;10:1697–1707. doi: 10.1016/s0969-2126(02)00912-7. [PMID: 12467577 ] [DOI] [PubMed] [Google Scholar]
  • 54.Paravicini G, et al. Biochem Biophys Res Commun. 1996;227:82–87. doi: 10.1006/bbrc.1996.1471. [PMID: 8858107 ] [DOI] [PubMed] [Google Scholar]
  • 55.Stehlin-Gaon C, et al. Nat Struct Biol. 2003;10:820–825. doi: 10.1038/nsb979. [PMID: 12958591 ] [DOI] [PubMed] [Google Scholar]
  • 56.Wiesenberg I, et al. Nucleic Acids Res. 1995;23:327–333. doi: 10.1093/nar/23.3.327. [PMID: 7885826 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Collins JL, et al. J Med Chem. 2002;45:1963–1966. doi: 10.1021/jm0255116. [PMID: 11985463 ] [DOI] [PubMed] [Google Scholar]
  • 58.Downes M, et al. Mol Cell. 2003;11:1079–1092. doi: 10.1016/s1097-2765(03)00104-7. [PMID: 12718892 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Lehmann JM, et al. J Biol Chem. 1997;272:3137–3140. doi: 10.1074/jbc.272.6.3137. [PMID: 9013544 ] [DOI] [PubMed] [Google Scholar]
  • 60.Makishima M, et al. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. [PMID: 10334992 ] [DOI] [PubMed] [Google Scholar]
  • 61.Maloney PR, et al. J Med Chem. 2000;43:2971–2974. doi: 10.1021/jm0002127. [PMID: 10956205 ] [DOI] [PubMed] [Google Scholar]
  • 62.Moore DD, et al. Pharmacol Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. [PMID: 17132852 ] [DOI] [PubMed] [Google Scholar]
  • 63.Otte K, et al. Mol Cell Biol. 2003;23:864–872. doi: 10.1128/MCB.23.3.864-872.2003. [PMID: 12529392 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Parks DJ, et al. Science. 1999;284:1365–1368. doi: 10.1126/science.284.5418.1365. [PMID: 10334993 ] [DOI] [PubMed] [Google Scholar]
  • 65.Pellicciari R, et al. J Med Chem. 2002;45:3569–3572. doi: 10.1021/jm025529g. [PMID: 12166927 ] [DOI] [PubMed] [Google Scholar]
  • 66.Repa JJ, et al. Science. 2000;289:1524–1529. doi: 10.1126/science.289.5484.1524. [PMID: 10968783 ] [DOI] [PubMed] [Google Scholar]
  • 67.Wu J, et al. Mol Endocrinol. 2002;16:1590–1597. doi: 10.1210/mend.16.7.0894. [PMID: 12089353 ] [DOI] [PubMed] [Google Scholar]
  • 68.Bishop JE, et al. J Bone Miner Res. 1994;9:1277–1288. doi: 10.1002/jbmr.5650090818. [PMID: 7976510 ] [DOI] [PubMed] [Google Scholar]
  • 69.Blumberg B, et al. Genes Dev. 1998;12:3195–3205. doi: 10.1101/gad.12.20.3195. [PMID: 9784494 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Colston KW, et al. Biochem Pharmacol. 1992;44:2273–2280. doi: 10.1016/0006-2952(92)90669-a. [PMID: 1472092 ] [DOI] [PubMed] [Google Scholar]
  • 71.Erben RG, et al. Mol Endocrinol. 2002;16:1524–1537. doi: 10.1210/mend.16.7.0866. [PMID: 12089348 ] [DOI] [PubMed] [Google Scholar]
  • 72.Fujishima T, et al. Bioorg Med Chem. 2003;11:3621–3631. doi: 10.1016/s0968-0896(03)00371-7. [PMID: 12901907 ] [DOI] [PubMed] [Google Scholar]
  • 73.Herdick M, et al. Chem Biol. 2000;7:885–894. doi: 10.1016/s1074-5521(00)00036-3. [PMID: 11094341 ] [DOI] [PubMed] [Google Scholar]
  • 74.Jones SA, et al. Mol Endocrinol. 2000;14:27–39. doi: 10.1210/mend.14.1.0409. [PMID: 10628745 ] [DOI] [PubMed] [Google Scholar]
  • 75.Kanno Y, et al. J Toxicol Sci. 2013;38:309–315. doi: 10.2131/jts.38.309. [PMID: 23665929 ] [DOI] [PubMed] [Google Scholar]
  • 76.Lehmann JM, et al. J Clin Invest. 1998;102:1016–1023. doi: 10.1172/JCI3703. [PMID: 9727070 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Maglich JM, et al. J Biol Chem. 2003;278:17277–17283. doi: 10.1074/jbc.M300138200. [PMID: 12611900 ] [DOI] [PubMed] [Google Scholar]
  • 78.Miura D, et al. J Biol Chem. 1999;274:16392–16399. doi: 10.1074/jbc.274.23.16392. [PMID: 10347199 ] [DOI] [PubMed] [Google Scholar]
  • 79.Moore DD, et al. Pharmacol Rev. 2006;58:742–759. doi: 10.1124/pr.58.4.6. [PMID: 17132852 ] [DOI] [PubMed] [Google Scholar]
  • 80.Moore LB, et al. Proc Natl Acad Sci USA. 2000;97:7500–7502. doi: 10.1073/pnas.130155097. [PMID: 10852961 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Moore LB, et al. J Biol Chem. 2000;275:15122–15127. doi: 10.1074/jbc.M001215200. [PMID: 10748001 ] [DOI] [PubMed] [Google Scholar]
  • 82.Tzameli I, et al. Mol Cell Biol. 2000;20:2951–2958. doi: 10.1128/mcb.20.9.2951-2958.2000. [PMID: 10757780 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Wentworth JM, et al. J Endocrinol. 2000;166:R11–R16. doi: 10.1677/joe.0.166r011. [PMID: 10974665 ] [DOI] [PubMed] [Google Scholar]
  • 84.Wiberg K, et al. Bone. 1995;17:391–395. doi: 10.1016/s8756-3282(95)00246-4. [PMID: 8573413 ] [DOI] [PubMed] [Google Scholar]
  • 85.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 86.Kiselyuk A, et al. Chem Biol. 2012;19:806–818. doi: 10.1016/j.chembiol.2012.05.014. [PMID: 22840769 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Yuan X, et al. PLoS ONE. 2009;4:e5609. doi: 10.1371/journal.pone.0005609. [ePMID: 19440305 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Chambon P. FASEB J. 1996;10:940–954. [PMID: 8801176 ] [PubMed] [Google Scholar]
  • 89.Ebisawa M, et al. Chem Pharm Bull. 1999;47:1778–1786. doi: 10.1248/cpb.47.1778. [PMID: 10748721 ] [DOI] [PubMed] [Google Scholar]
  • 90.Germain P, et al. Pharmacol Rev. 2006;58:760–772. doi: 10.1124/pr.58.4.7. [PMID: 17132853 ] [DOI] [PubMed] [Google Scholar]
  • 91.Germain P, et al. Nature. 2002;415:187–192. doi: 10.1038/415187a. [PMID: 11805839 ] [DOI] [PubMed] [Google Scholar]
  • 92.Mangelsdorf DJ, Evans RM. Cell. 1995;83:841–850. doi: 10.1016/0092-8674(95)90200-7. [PMID: 8521508 ] [DOI] [PubMed] [Google Scholar]
  • 93.Nahoum V, et al. Proc Natl Acad Sci USA. 2007;104:17323–17328. doi: 10.1073/pnas.0705356104. [PMID: 17947383 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 95.Shyr CR, et al. Mol Cell Biol. 2002;22:4661–4666. doi: 10.1128/MCB.22.13.4661-4666.2002. [PMID: 12052874 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Zhou XE, et al. J Biol Chem. 2011;286:2877–2885. doi: 10.1074/jbc.M110.168740. [PMID: 21068381 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 98.Land PW, Monaghan AP. Cereb Cortex. 2003;13:921–931. doi: 10.1093/cercor/13.9.921. [PMID: 12902391 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Monaghan AP, et al. Nature. 1997;390:515–517. doi: 10.1038/37364. [PMID: 9394001 ] [DOI] [PubMed] [Google Scholar]
  • 100.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 101.Pereira FA, et al. Genes Dev. 1999;13:1037–1049. doi: 10.1101/gad.13.8.1037. [PMID: 10215630 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Qiu Y, et al. Genes Dev. 1997;11:1925–1937. doi: 10.1101/gad.11.15.1925. [PMID: 9271116 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Warnecke M, et al. Genes Dev. 2005;19:614–625. doi: 10.1101/gad.317905. [PMID: 15741322 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 105.Suetsugi M, et al. Mol Cancer Res. 2003;1:981–991. [PMID: 14638870 ] [PubMed] [Google Scholar]
  • 106.Willy PJ, et al. Proc Natl Acad Sci USA. 2004;101:8912–8917. doi: 10.1073/pnas.0401420101. [PMID: 15184675 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Yu DD, Forman BM. Bioorg Med Chem Lett. 2005;15:1311–1313. doi: 10.1016/j.bmcl.2005.01.025. [PMID: 15713377 ] [DOI] [PubMed] [Google Scholar]
  • 108.Zuercher WJ, et al. J Med Chem. 2005;48:3107–3109. doi: 10.1021/jm050161j. [PMID: 15857113 ] [DOI] [PubMed] [Google Scholar]
  • 109.Baker KD, et al. Cell. 2003;113:731–742. doi: 10.1016/s0092-8674(03)00420-3. [PMID: 12809604 ] [DOI] [PubMed] [Google Scholar]
  • 110.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 111.Flaig R, et al. J Biol Chem. 2005;280:19250–19258. doi: 10.1074/jbc.M413175200. [PMID: 15716272 ] [DOI] [PubMed] [Google Scholar]
  • 112.Wang Z, et al. Nature. 2003;423:555–560. doi: 10.1038/nature01645. [PMID: 12774125 ] [DOI] [PubMed] [Google Scholar]
  • 113.Zhan Y, et al. Nat Chem Biol. 2008;4:548–556. doi: 10.1038/nchembio.106. [PMID: 18690216 ] [DOI] [PubMed] [Google Scholar]
  • 114.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 115.Del Tredici AL, et al. Mol Pharmacol. 2008;73:900–908. doi: 10.1124/mol.107.040089. [PMID: 18055761 ] [DOI] [PubMed] [Google Scholar]
  • 116.Madoux F, et al. Mol Pharmacol. 2008;73:1776–1784. doi: 10.1124/mol.108.045963. [PMID: 18334597 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 118.Benoit G, et al. Pharmacol Rev. 2006;58:798–836. doi: 10.1124/pr.58.4.10. [PMID: 17132856 ] [DOI] [PubMed] [Google Scholar]
  • 119.Compton DR, et al. J Med Chem. 2004;47:5872–5893. doi: 10.1021/jm049631k. [PMID: 15537344 ] [DOI] [PubMed] [Google Scholar]
  • 120.Dahlman-Wright K, et al. Pharmacol Rev. 2006;58:773–781. doi: 10.1124/pr.58.4.8. [PMID: 17132854 ] [DOI] [PubMed] [Google Scholar]
  • 121.de Gasparo M, et al. J Pharmacol Exp Ther. 1987;240:650–656. [PMID: 2949071 ] [PubMed] [Google Scholar]
  • 122.Gass EK, et al. Endocrinology. 1998;139:1905–1919. doi: 10.1210/endo.139.4.5944. [PMID: 9528977 ] [DOI] [PubMed] [Google Scholar]
  • 123.Ge RS, et al. Mol Cell Endocrinol. 2005;243:35–42. doi: 10.1016/j.mce.2005.08.004. [PMID: 16188378 ] [DOI] [PubMed] [Google Scholar]
  • 124.Giwercman A, et al. J Clin Endocrinol Metab. 2000;85:2253–2259. doi: 10.1210/jcem.85.6.6626. [PMID: 10852459 ] [DOI] [PubMed] [Google Scholar]
  • 125.Heikinheimo O, et al. J Steroid Biochem. 1987;26:279–284. doi: 10.1016/0022-4731(87)90083-5. [PMID: 3560943 ] [DOI] [PubMed] [Google Scholar]
  • 126.Hellal-Levy C, et al. FEBS Lett. 1999;464:9–13. doi: 10.1016/s0014-5793(99)01667-1. [PMID: 10611474 ] [DOI] [PubMed] [Google Scholar]
  • 127.Hu X, et al. Mini Rev Med Chem. 2005;5:709–718. doi: 10.2174/1389557054553811. [PMID: 16101407 ] [DOI] [PubMed] [Google Scholar]
  • 128.Kraichely DM, et al. Endocrinology. 2000;141:3534–3545. doi: 10.1210/endo.141.10.7698. [PMID: 11014206 ] [DOI] [PubMed] [Google Scholar]
  • 129.Leonhardt SA, et al. Mol Endocrinol. 1998;12:1914–1930. doi: 10.1210/mend.12.12.0210. [PMID: 9849965 ] [DOI] [PubMed] [Google Scholar]
  • 130.Levin ER. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1425–R1430. doi: 10.1152/ajpregu.90605.2008. [PMID: 18784332 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Li JJ, et al. J Med Chem. 2008;51:7010–7014. doi: 10.1021/jm8009316. [PMID: 18921992 ] [DOI] [PubMed] [Google Scholar]
  • 132.Lu NZ, et al. Pharmacol Rev. 2006;58:782–797. doi: 10.1124/pr.58.4.9. [PMID: 17132855 ] [DOI] [PubMed] [Google Scholar]
  • 133.Malamas MS, et al. J Med Chem. 2004;47:5021–5040. doi: 10.1021/jm049719y. [PMID: 15456246 ] [DOI] [PubMed] [Google Scholar]
  • 134.Meyers MJ, et al. J Med Chem. 1999;42:2456–2468. doi: 10.1021/jm990101b. [PMID: 10395487 ] [DOI] [PubMed] [Google Scholar]
  • 135.Meyers MJ, et al. J Med Chem. 2001;44:4230–4251. doi: 10.1021/jm010254a. [PMID: 11708925 ] [DOI] [PubMed] [Google Scholar]
  • 136.Ning M, et al. Br J Pharmacol. 2007;150:19–28. doi: 10.1038/sj.bjp.0706960. [PMID: 17115070 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Prossnitz ER, et al. Annu Rev Physiol. 2008;70:165–190. doi: 10.1146/annurev.physiol.70.113006.100518. [PMID: 18271749 ] [DOI] [PubMed] [Google Scholar]
  • 138.Prossnitz ER, Maggiolini M. Mol Cell Endocrinol. 2009;308:1–2. doi: 10.1016/j.mce.2009.04.005. [PMID: 19389460 ] [DOI] [PubMed] [Google Scholar]
  • 139.Rupprecht R, et al. Eur J Pharmacol. 1993;247:145–154. doi: 10.1016/0922-4106(93)90072-h. [PMID: 8282004 ] [DOI] [PubMed] [Google Scholar]
  • 140.Schindler AE, et al. Maturitas. 2003;46:S7–S16. doi: 10.1016/j.maturitas.2003.09.014. [PMID: 14670641 ] [DOI] [PubMed] [Google Scholar]
  • 141.Simard J, et al. Urology. 1997;49:580–586. doi: 10.1016/s0090-4295(97)00029-0. ; discussion 586–9. [PMID: 9111629 ] [DOI] [PubMed] [Google Scholar]
  • 142.Smith JL, et al. Steroids. 2008;73:1160–1173. doi: 10.1016/j.steroids.2008.05.003. [PMID: 18603275 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Stauffer SR, et al. J Med Chem. 2000;43:4934–4947. doi: 10.1021/jm000170m. [PMID: 11150164 ] [DOI] [PubMed] [Google Scholar]
  • 144.Stephenson G, et al. Am J Physiol. 1984;246(2):F227–F233. doi: 10.1152/ajprenal.1984.246.2.F227. Pt 2):. [PMID: 6320679 ] [DOI] [PubMed] [Google Scholar]
  • 145.Sun J, et al. Endocrinology. 2002;143:941–947. doi: 10.1210/endo.143.3.8704. [PMID: 11861516 ] [DOI] [PubMed] [Google Scholar]
  • 146.Sun J, et al. Endocrinology. 1999;140:800–804. doi: 10.1210/endo.140.2.6480. [PMID: 9927308 ] [DOI] [PubMed] [Google Scholar]
  • 147.Tilley WD, et al. Proc Natl Acad Sci USA. 1989;86:327–331. doi: 10.1073/pnas.86.1.327. [PMID: 2911578 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Vegeto E, et al. Mol Endocrinol. 1993;7:1244–1255. doi: 10.1210/mend.7.10.8264658. [PMID: 8264658 ] [DOI] [PubMed] [Google Scholar]
  • 149.Wang LG, et al. Biochem Pharmacol. 1998;55:1427–1433. doi: 10.1016/s0006-2952(97)00657-6. [PMID: 10076535 ] [DOI] [PubMed] [Google Scholar]
  • 150.Yu DD, Forman BM. Bioorg Med Chem Lett. 2005;15:1311–1313. doi: 10.1016/j.bmcl.2005.01.025. [PMID: 15713377 ] [DOI] [PubMed] [Google Scholar]
  • 151.Zhu Y, et al. Proc Natl Acad Sci USA. 2003;100:2237–2242. doi: 10.1073/pnas.0436133100. [PMID: 12601167 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Zhu Y, et al. Proc Natl Acad Sci USA. 2003;100:2231–2236. doi: 10.1073/pnas.0336132100. [PMID: 12574519 ] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES