Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.
Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.
It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
An Introduction to Transporters
The majority of biological solutes are charged organic or inorganic molecules. Cellular membranes are hydrophobic and, therefore, effective barriers to separate them allowing the formation of gradients, which can be exploited, for example, in the generation of energy. Membrane transporters carry solutes across cell membranes, which would otherwise be impermeable to them. The energy required for active transport processes is obtained from ATP turnover or by exploiting ion gradients.
ATP-driven transporters can be divided into three major classes: P-type ATPases; F-type or V-type ATPases and ATP-binding cassette transporters. The first of these, P-type ATPases, are multimeric proteins, which transport (primarily) inorganic cations. The second, F-type or V-type ATPases, are proton-coupled motors, which can function either as transporters or as motors. Last, are ATP-binding cassette transporters, heavily involved in drug disposition as well as transporting endogenous solutes.
The second largest family of membrane proteins in the human genome, after the G protein-coupled receptors, are the SLC solute carrier family. Within the solute carrier family, there are not only a great variety of solutes transported, from simple inorganic ions to amino acids and sugars to relatively complex organic molecules like haem. The solute carrier family includes 52 families of almost 400 members. Many of these overlap in terms of the solutes that they carry. For example, amino acid accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Some SLC family members remain orphan transporters, in as much as a physiological function has yet to be determined. Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain protein. Membrane topology predictions for other families suggest 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, or 14 TM domains. The SLC transporters include members which function as antiports, where solute movement in one direction is balanced by a solute moving in the reverse direction. Symports allow concentration gradients of one solute to allow movement of a second solute across a membrane. A third, relatively small group are equilibrative transporters, which allow solutes to travel across membranes down their concentration gradients. A more complex family of transporters, the SLC27 fatty acid transporters also express enzymatic function. Many of the transporters also express electrogenic properties of ion channels.
Acknowledgments
We wish to acknowledge the tremendous help provided by the Consultants to the Guides past and present (see list in the Overview, p. 1452). We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z]), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.
Conflict of interest
The authors state that there is no conflict of interest to disclose.
List of records presented
1708 ATP-binding cassette transporter family
1712 F-type and V-type ATPases
1714 P-type ATPases
1717 SLC1 family of amino acid transporters
1719 SLC2 family of hexose and sugar alcohol transporters
1721 SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)
1723 SLC4 family of bicarbonate transporters
1724 SLC5 family of sodium-dependent glucose transporters
1728 SLC6 neurotransmitter transporter family
1732 SLC8 family of sodium/calcium exchangers
1733 SLC9 family of sodium/hydrogen exchangers
1734 SLC10 family of sodium-bile acid co-transporters
1736 SLC11 family of proton-coupled metal ion transporters
1737 SLC12 family of cation-coupled chloride transporters
1739 SLC13 family of sodium-dependent sulphate/carboxylate transporters
1740 SLC14 family of facilitative urea transporters
1741 SLC15 family of peptide transporters
1742 SLC16 family of monocarboxylate transporters
1744 SLC17 phosphate and organic anion transporter family
1746 SLC18 family of vesicular amine transporters
1748 SLC19 family of vitamin transporters
1749 SLC20 family of sodium-dependent phosphate transporters
1750 SLC22 family of organic cation and anion transporters
1753 SLC23 family of ascorbic acid transporters
1754 SLC24 family of sodium/potassium/calcium exchangers
1755 SLC25 family of mitochondrial transporters
1760 SLC26 family of anion exchangers
1762 SLC27 family of fatty acid transporters
1763 SLC28 and SLC29 families of nucleoside transporters
1765 SLC30 zinc transporter family
1766 SLC31 family of copper transporters
1767 SLC32 vesicular inhibitory amino acid transporter
1768 SLC33 acetylCoA transporter
1769 SLC34 family of sodium phosphate co-transporters
1770 SLC35 family of nucleotide sugar transporters
1772 SLC36 family of proton-coupled amino acid transporters
1773 SLC37 family of phosphosugar/phosphate exchangers
1774 SLC38 family of sodium-dependent neutral amino acid transporters
1776 SLC39 family of metal ion transporters
1777 SLC40 iron transporter
1778 SLC41 family of divalent cation transporters
1779 SLC42 family of Rhesus glycoprotein ammonium transporters
1780 SLC43 family of large neutral amino acid transporters
1781 SLC44 choline transporter-like family
1782 SLC45 family of putative sugar transporters
1783 SLC46 family of folate transporters
1784 SLC47 family of multidrug and toxin extrusion transporters
1785 SLC48 heme transporter
1786 SLC49 family of FLVCR-related heme transporters
1787 SLC50 sugar transporter
1788 SLC51 family of steroid-derived molecule transporters
1789 SLC52 family of riboflavin transporters
1790 SLCO family of organic anion transporting polypeptides
ATP-binding cassette transporter family
Overview
ATP-binding cassette transporters are ubiquitous membrane proteins characterized by active ATP-dependent movement of a range of substrates, including ions, lipids, peptides, steroids. Individual subunits are typically made up of two groups of 6TM-spanning domains, with two nucleotide-binding domains (NBD). The majority of eukaryotic ABC transporters are ‘full’ transporters incorporating both TM and NBD entities. Some ABCs, notably the ABCD and ABCG families are half-transporters with only a single membrane spanning domain and one NBD, and are only functional as homo- or heterodimers. Eukaryotic ABC transporters convey substrates from the cytoplasm, either out of the cell or into intracellular organelles. Their role in the efflux of exogenous compounds, notably chemotherapeutic agents, has led to considerable interest.
ABCA subfamily
Systematic nomenclature | Common abbreviation | HGNC, UniProt | Comment |
ABCA1 | ABC1, CERP | ABCA1, O95477 | Loss-of-function mutations are associated with Tangier disease, in which plasma HDL cholesterol levels are greatly reduced |
ABCA2 | ABC2 | ABCA2, Q9BZC7 | – |
ABCA3 | ABC3, ABCC | ABCA3, Q99758 | Loss-of-function mutations are associated with pulmonary surfactant deficiency |
ABCA4 | ABCR | ABCA4, P78363 | Retinal-specific transporter of N-retinylPE; loss-of-function mutations are associated with Stargardt disease, a juvenile onset macular degenerative disease |
ABCA5 | – | ABCA5, Q8WWZ7 | – |
ABCA6 | – | ABCA6, Q8N139 | – |
ABCA7 | – | ABCA7, Q8IZY2 | Genome wide association studies identify ABCA7 variants as associated with Alzheimer's Disease 6 |
ABCA8 | – | ABCA8, O94911 | – |
ABCA9 | – | ABCA9, Q8IUA7 | – |
ABCA10 | – | ABCA10, Q8WWZ4 | – |
ABCA12 | – | ABCA12, Q86UK0 | Reported to play a role in skin ceramide formation 23 |
ABCA13 | – | ABCA13, Q86UQ4 | – |
Comments
A number of structural analogues are not found in man: ABCA14 (ENSMUSG00000062017); ABCA15 (ENSMUSG00000054746); ABCA16 (ENSMUSG00000051900) and ABCA17 (ENSMUSG00000035435).
ABCB subfamily
Systematic nomenclature | Common abbreviation | HGNC, UniProt | Comment |
ABCB1 | MDR1, PGP1 | ABCB1, P08183 | Responsible for the cellular export of many therapeutic drugs. The mouse and rat have two Mdr1 genes (gene names; Mdr1a and Mdr1b) while the human has only the one gene, MDR1 |
ABCB2 | TAP1 | TAP1, Q03518 | Endoplasmic reticulum peptide transporter, possibly requires heterodimerization with TAP2 |
ABCB3 | TAP2 | TAP2, Q03519 | Endoplasmic reticulum peptide transporter, possibly requires heterodimerization with TAP1 |
ABCB4 | PGY3 | ABCB4, P21439 | Transports phosphatidylcholine from intracellular to extracellular face of the hepatocyte canalicular membrane 13 |
ABCB5 | – | ABCB5, Q2M3G0 | Multidrug resistance protein in, and marker of, melanoma cells 17 |
ABCB6 | MTABC3 | ABCB6, Q9NP58 | Putative mitochondrial porphyrin transporter 11; other subcellular localizations are possible, such as the plasma membrane, as a specific determinant of the Langereis blood group system 5 |
ABCB7 | ABC7 | ABCB7, O75027 | Mitochondrial; reportedly essential for haematopoiesis 15 |
ABCB8 | MABC1 | ABCB8, Q9NUT2 | Mitochondrial; suggested to play a role in chemoresistance of melanoma 4 |
ABCB9 | TAPL | ABCB9, Q9NP78 | Reported to be lysosomal 7 |
ABCB10 | MTABC2 | ABCB10, Q9NRK6 | Mitochondrial location; the first human ABC transporter to have a crystal structure reported 18 |
ABCB11 | ABC16 | ABCB11, O95342 | Loss-of-function mutations are associated with progressive familial intrahepatic cholestasis type 2 19 |
ABCC subfamily
Systematic nomenclature | Common abbreviation | HGNC, UniProt | Comment |
ABCC1 | MRP1 | ABCC1, P33527 | Exhibits a broad substrate specificity 1, including LTC4 (Km 97 nM 12) and estradiol-17β-glucuronide 20 |
ABCC2 | MRP2, cMOAT | ABCC2, Q92887 | Loss-of-function mutations are associated with Dubin-Johnson syndrome, in which plasma levels of conjugated bilirubin are elevated (OMIM: 237500) |
ABCC3 | MRP3 | ABCC3, O15438 | Transports conjugates of glutathione, sulfate or glucuronide 2 |
ABCC4 | MRP4 | ABCC4, O15439 | Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned 2; reported to export prostaglandins in a manner sensitive to NSAIDS 16 |
ABCC5 | MRP5 | ABCC5, O15440 | Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned 2 |
ABCC6 | MRP6 | ABCC6, O95255 | Loss-of-function mutations in ABCC6 are associated with pseudoxanthoma elasticum (OMIM: 264800) |
ABCC10 | MRP7 | ABCC10, Q5T3U5 | – |
ABCC11 | MRP8 | ABCC11, Q96J66 | Single nucleotide polymorphisms distinguish wet vs. dry earwax (OMIM: 117800); an association between earwax allele and breast cancer risk is reported in Japanese but not European populations |
ABCC12 | MRP9 | ABCC12, Q96J65 | – |
Comments
ABCC7 (also known as CFTR), a 12TM ABC transporter-type protein, is a cAMP-regulated epithelial cell membrane Cl- channel involved in normal fluid transport across various epithelia and can be viewed in the Chloride channels section of the Guide ABCC8 (ENSG00000006071, also known as SUR1, sulfonylurea receptor 1) and ABCC9 (ENSG00000069431, also known as SUR2, sulfonylurea receptor 2) are unusual in that they lack transport capacity but regulate the activity of particular K+ channels (Kir6.1–6.2), conferring nucleotide sensitivity to these channels to generate the canonical KATP channels. ABCC13 (ENSG00000155288) is a possible pseudogene.
ABCD subfamily of peroxisomal ABC transporters
Overview
This family of ‘half-transporters' act as homo- or heterodimers to accumulate fatty acid-CoA esters into peroxisomes for oxidative metabolism 9.
Systematic nomenclature | Common abbreviation | HGNC, UniProt | Comment |
ABCD1 | ALDP | ABCD1, P33897 | Transports coenzyme A esters of very long chain fatty acids 21,22; loss-of-function mutations in ABCD1 are associated with adrenoleukodystrophy (OMIM: 3001002) |
ABCD2 | ALDR | ABCD2, Q9UBJ2 | Coenzyme A esters of very long chain unsaturated fatty acids 22 |
ABCD3 | PMP70 | ABCD3, P28288 | – |
Comments
ABCD4 (ENSG00000119688, also known as PMP69, PXMP1-L or P70R) appears to be located on the endoplasmic reticulum 8, with an unclear function. Loss-of-function mutations in the gene encoding ALDP underlie the metabolic storage disorder X-linked adrenoleukodystrophy.
ABCG subfamily
Overview
This family of ‘half-transporters' act as homo- or heterodimers; particularly ABCG5 and ABCG8 are thought to be obligate heterodimers. They are associated with cellular export of sterols and phospholipids, as well as exogenous drugs (ABCG2).
Systematic nomenclature | Common abbreviation | HGNC, UniProt | Comment |
ABCG1 | ABC8 | ABCG1, P45844 | Transports sterols and choline phospholipids 10 |
ABCG2 | ABCP | ABCG2, Q9UNQ0 | Exhibits a broad substrate specificity, including urate and haem, as well as multiple synthetic compounds 10. The functional transporter is likely to be a homodimer, although higher oligomeric states have also been proposed |
ABCG4 | – | ABCG4, Q9H172 | Putative functional dependence on ABCG1 |
ABCG5 | – | ABCG5, Q9H222 | Transports phytosterols and cholesterol; forms an obligate heterodimer with ABCG8. Loss-of-function mutations in ABCG5 are associated with sitosterolemia (OMIM: 210250) |
ABCG8 | – | ABCG8, Q9H221 | Transports phytosterols and cholesterol; forms an obligate heterodimer with ABCG5. Loss-of-function mutations in ABCG8 are associated with sitosterolemia (OMIM: 210250) |
Comments
A further group of ABC transporter-like proteins have been identified to lack membrane spanning regions and are not believed to be functional transporters, but appear to have a role in protein translation 3,14: ABCE1 (P61221, also known as OABP or 2'-5' oligoadenylate-binding protein); ABCF1 (Q8NE71, also known as ABC50 or TNF-α-stimulated ABC protein); ABCF2 (Q9UG63, also known as iron-inhibited ABC transporter 2) and ABCF3 (Q9NUQ8).
F-type and V-type ATPases
Overview
The F-type (ATP synthase) and the V-type (vacuolar or vesicular proton pump) ATPases, although having distinct subcellular locations and roles, exhibit marked similarities in subunit structure and mechanism. They are both composed of a ‘soluble’ complex (termed F1 or V1) and a membrane complex (Fo or Vo). Within each ATPase complex, the two individual sectors appear to function as connected opposing rotary motors, coupling catalysis of ATP synthesis or hydrolysis to proton transport. Both the F-type and V-type ATPases have been assigned enzyme commission number E.C. 3.6.3.14
F-type ATPase
Overview
The F-type ATPase, also known as ATP synthase or ATP phosphohydrolase (H+-transporting), is a mitochondrial membrane-associated multimeric complex consisting of two domains, an F0 channel domain in the membrane and an F1 domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of ATP, although it is also possible for the enzyme to function as an ATPase. The ATP5O subunit (oligomycin sensitivity-conferring protein, OSCP, (P48047)), acts as a connector between F1 and F0 motors.
The F1 motor, responsible for ATP turnover, has the subunit composition α3β3γδε.
The F0 motor, responsible for ion translocation, is complex in mammals, with probably nine subunits centring on A, B, and C subunits in the membrane, together with D, E, F2, F6, G2 and 8 subunits. Multiple pseudogenes for the F0 motor proteins have been defined in the human genome.
V-type ATPase
Overview
The V-type ATPase is most prominently associated with lysosomes in mammals, but also appears to be expressed on the plasma membrane and neuronal synaptic vesicles.
The V1 motor, responsible for ATP turnover, has eight subunits with a composition of A-H.
TheVo motor, responsible for ion translocation, has six subunits (a-e).
Nomenclature | A subunit | B1 subunit | B2 subunit | C1 subunit | C2 subunit | D subunit | E1 subunit | E2 subunit | F subunit | G1 subunit | G2 subunit | G3 subunit | H subunit |
HGNC, UniProt | ATP6V1A, P38606 | ATP6V1B1, P15313 | ATP6V1B2, P21281 | ATP6V1C1, P21283 | ATP6V1C2, Q8NEY4 | ATP6V1D, Q9Y5K8 | ATP6V1E1, P36543 | ATP6V1E2, Q96A05 | ATP6V1F, Q16864 | ATP6V1G1, O75348 | ATP6V1G2, O95670 | ATP6V1G3, Q96LB4 | ATP6V1H, Q9UI12 |
Nomenclature | a1 subunit | a2 subunit | a3 subunit | a4 subunit | b subunit | c subunit | d1 subunit | d2 subunit | e1 subunit | e2 subunit |
HGNC, UniProt | ATP6V0A1, Q93050 | ATP6V0A2, Q9Y487 | TCIRG1, Q13488 | ATP6V0A4, Q9HBG4 | ATP6V0B, Q99437 | ATP6V0C, P27449 | ATP6V0D1, P61421 | ATP6V0D2, Q8N8Y2 | ATP6V0E1, O15342 | ATP6V0E2, Q8NHE4 |
P-type ATPases
Overview
Phosphorylation-type ATPases (EC 3.6.3.-) are associated with membranes and the transport of ions or phospholipids. Characteristics of the family are the transient phosphorylation of the transporters at an aspartate residue and the interconversion between E1 and E2 conformations in the activity cycle of the transporters, taken to represent ‘half-channels' facing the cytoplasm and extracellular/luminal side of the membrane, respectively.
Sequence analysis across multiple species allows the definition of five subfamilies, P1-P5. The P1 subfamily includes heavy metal pumps, such as the copper ATPases. The P2 subfamily includes calcium, sodium/potassium and proton/potassium pumps. The P4 and P5 subfamilies include putative phospholipid flippases.
Na+/K+-ATPases (EC 3.6.3.9)
Overview
The cell-surface Na+/K+-ATPase is an integral membrane protein which regulates the membrane potential of the cell by maintaining gradients of Na+ and K+ ions across the plasma membrane, also making a small, direct contribution to membrane potential, particularly in cardiac cells. For every molecule of ATP hydrolysed, the Na+/K+-ATPase extrudes three Na+ ions and imports two K+ ions. The active transporter is a heteromultimer with incompletely defined stoichiometry, possibly as tetramers of heterodimers, each consisting of one of four large, ten TM domain catalytic α subunits and one of three smaller, single TM domain glycoprotein β-subunits (see table). Additional protein partners known as FXYD proteins (e.g. FXYD2, P54710) appear to associate with and regulate the activity of the pump.
Comments
Na+/K+-ATPases are inhibited by ouabain and cardiac glycosides, such as digoxin, as well as potentially endogenous cardiotonic steroids 24.
Ca2+-ATPases (EC 3.6.3.8)
Overview
The sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) is an intracellular membrane-associated pump for sequestering calcium from the cytosol into intracellular organelles, usually associated with the recovery phase following excitation of muscle and nerves.
The plasma membrane Ca2+-ATPase (PMCA) is a cell-surface pump for extruding calcium from the cytosol, usually associated with the recovery phase following excitation of cells. The active pump is a homodimer, each subunit of which is made up of ten TM segments, with cytosolic C- and N-termini and two large intracellular loops.
Secretory pathway Ca2+-ATPases (SPCA) allow accumulation of calcium and manganese in the Golgi apparatus.
Comments
The fungal toxin ochratoxin A has been described to activate SERCA in kidney microsomes 25. cyclopiazonic acid 29, thapsigargin 27 and BHQ are widely employed to block SERCA. Thapsigargin has also been described to block the TRPV1 vanilloid receptor 30.
Comments
The stoichiometry of flux through the PMCA differs from SERCA, with the PMCA transporting 1 Ca2+ while SERCA transports 2 Ca2+.
Comments
Loss-of-function mutations in SPCA1 appear to underlie Hailey-Hailey disease 26.
H+/K+-ATPases (EC 3.6.3.10)
Overview
The H+/K+ ATPase is a heterodimeric protein, made up of α and β subunits. The α subunit has 10 TM domains and exhibits catalytic and pore functions, while the β subunit has a single TM domain, which appears to be required for intracellular trafficking and stabilising the α subunit. The ATP4A and ATP4B subunits are expressed together, while the ATP12A subunit is suggested to be expressed with the β1 (ATP1B1) subunit of the Na+/K+-ATPase 28.
Comments
The gastric H+/K+-ATPase is inhibited by proton pump inhibitors used for treating excessive gastric acid secretion, including (R)-lansoprazole and a metabolite of esomeprazole.
Cu+-ATPases (EC 3.6.3.4)
Overview
Copper-transporting ATPases convey copper ions across cell-surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. ATOX1, O00244).
Phospholipid-transporting ATPases (EC 3.6.3.1)
Overview
These transporters are thought to translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from one side of the phospholipid bilayer to the other to generate asymmetric membranes. They are also proposed to be involved in the generation of vesicles from intracellular and cell-surface membranes.
Nomenclature | ATP8A1 | ATP8A2 | ATP8B1 | ATP8B2 | ATP8B3 | ATP8B4 | ATP9A | ATP9B | ATP10A | ATP10B | ATP10D | ATP11A | ATP11B | ATP11C |
HGNC, UniProt | ATP8A1, Q9Y2Q0 | ATP8A2, Q9NTI2 | ATP8B1, O43520 | ATP8B2, P98198 | ATP8B3, O60423 | ATP8B4, Q8TF62 | ATP9A, O75110 | ATP9B, O43861 | ATP10A, O60312 | ATP10B, O94823 | ATP10D, Q9P241 | ATP11A, P98196 | ATP11B, Q9Y2G3 | ATP11C, Q8NB49 |
Comments
Loss-of-function mutations in ATP8B1 are associated with type I familial intrahepatic cholestasis.
A further series of structurally-related proteins have been identified in the human genome, with as yet undefined function, including ATP13A1 (Q9HD20), ATP13A2 (Q9NQ11), ATP13A3 (Q9H7F0), ATP13A4 (Q4VNC1) and ATP13A5 (Q4VNC0).
SLC1 family of amino acid transporters
Overview
The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 31,37,64,65,76.
Glutamate transporter subfamily
Overview
Glutamate transporters present the unusual structural motif of 8TM segments and 2 re-entrant loops 60. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation 38,78,93 reviewed by 63). This structural data is in agreement with the proposed quaternary structure for EAAT2 55 and several functional studies that propose the monomer is the functional unit 57,67,69,83. Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers 74. The activity of glutamate transporters located upon both neurones (predominantly EAAT3, 4 and 5) and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate-glutamine cycle. The Na+/K+-ATPase that maintains the ion gradients that drive transport has been demonstrated to co-assemble with EAAT1 and EAAT2 80. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 54,70. Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss-of-function mutations in EAAT3 36. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting from administration of β-lactam antibiotics (e.g. ceftriaxone) is neuroprotective and occurs through NF-κB-mediated EAAT2 promoter activation 53,71,81 reviewed by 66). PPARγ activation (e.g. by rosiglitazone) also leads to enhanced expression of EAAT though promoter activation 79. In addition, several translational activators of EAAT2 have recently been described 42 along with treatments that increase the surface expression of EAAT2 (e.g. 68; 98), or prevent its down-regulation (e.g. 56). A thermodynamically uncoupled Cl- flux, activated by Na+ and glutamate 59,64,73 (Na+ and aspartate in the case of GltPh 82), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability 88,92. Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter 52.
Nomenclature | Excitatory amino acid transporter 1 | Excitatory amino acid transporter 2 | Excitatory amino acid transporter 3 | Excitatory amino acid transporter 4 | Excitatory amino acid transporter 5 |
Systematic nomenclature | SLC1A3 | SLC1A2 | SLC1A1 | SLC1A6 | SLC1A7 |
Common abbreviation | EAAT1 | EAAT2 | EAAT3 | EAAT4 | EAAT5 |
HGNC, UniProt | SLC1A3, P43003 | SLC1A2, P43004 | SLC1A1, P43005 | SLC1A6, P48664 | SLC1A7, O00341 |
Endogenous substrates | L-glutamic acid, L-aspartic acid | L-glutamic acid, L-aspartic acid | L-glutamic acid, L-aspartic acid, L-cysteine 94 | L-glutamic acid, L-aspartic acid | L-glutamic acid, L-aspartic acid |
Substrates | DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid | DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid | DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid | DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid | DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid |
Inhibitors (pIC50) | DL-TBOA (pKB 5.0) 85, UCPH-101 (membrane potential assay) (6.9) 62 | DL-TBOA (pKB 6.9) 85, SYM2081 (pKB 5.5) 91, dihydrokainate (pKB 5.0), threo-3-methylglutamate (pKB 4.7) 91, WAY-213613 (6.9) | NBI-59159 (7.6), L-β-BA ([3H]D-aspartate uptake assay) (6.1), DL-TBOA (5.1) | DL-TBOA (pKi 5.4) 84, threo-3-methylglutamate (pKi 4.3) 47 | DL-TBOA (pKi 5.5) 84 |
Radioligands (Kd) | [3H](2S,4R)-4-methylglutamate, [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (1.55x10−8 M) | [3H](2S,4R)-4-methylglutamate, [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (1.62x10−8 M) | [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (3.2x10−7 M) | [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (2.48x10−8 M) | [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (2.95x10−8 M) |
Stoichiometry | Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) | 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 72 | 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 95 | Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+(out) | Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) |
Comments
The KB (or Ki) values reported, unless indicated otherwise, are derived from transporter currents mediated by EAATs expressed in voltage-clamped Xenopus laevis oocytes 47,84,85,91. KB (or Ki) values derived in uptake assays are generally higher (e.g. 85). In addition to acting as a poorly transportable inhibitor of EAAT2, (2S,4R)-4-methylglutamate, also known as SYM2081, is a competitive substrate for EAAT1 (KM = 54μM; 61,91) and additionally is a potent kainate receptor agonist 97 which renders the compound unsuitable for autoradiographic localisation of EAATs 33. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors 85. WAY-855 and WAY-213613 are both non-substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 45,46. NBI-59159 is a non-substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (>10-fold) and EAAT2 (5-fold) 43,44. Analogously, L-β-threo-benzyl-aspartate (L-β-BA) is a competitive non-substrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 48. [3H](2S,4R)-4-methylglutamate demonstrates low affinity binding (KD ≅ 6.0 μM) to EAAT1 and EAAT2 in rat brain homogenates 34 and EAAT1 in murine astrocyte membranes 32, whereas [3H]ETB-TBOA binds with high affinity to all EAATs other than EAAT3 86. The novel isoxazole derivative (–)-HIP-A may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate 41. threo-3-methylglutamate induces substrate-like currents at EAAT4, but does not elicit heteroexchange of [3H]-aspartate in synaptosome preparations, inconsistent with the behaviour of a substrate inhibitor 47. parawixin 1, a compound isolated from the venom from the spider Parawixia bistriata is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 50,51. In addition to the agents listed in the table, DL-threo-β-hydroxyaspartate and L-trans-2,4-pyrolidine dicarboxylate act as non-selective competitive substrate inhibitors of all EAATs. Zn2+ and arachidonic acid are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by 90).
Alanine/serine/cysteine transporter subfamily
Overview
ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr and their structure is predicted to be similar to that of the glutamate transporters 35,89. ASCT1 and ASCT2 also exhibit thermodynamically uncoupled chloride channel activity associated with substrate transport 40,96. Whereas EAATs counter-transport K+ (see above) ASCTs do not and their function is independent of the intracellular concentration of K+ 96.
Nomenclature | Alanine/serine/cysteine transporter 1 | Alanine/serine/cysteine transporter 2 |
Systematic nomenclature | SLC1A4 | SLC1A5 |
Common abbreviation | ASCT1 | ASCT2 |
HGNC, UniProt | SLC1A4, P43007 | SLC1A5, Q15758 |
Endogenous substrates | L-cysteine > L-alanine = L-serine > L-threonine | L-alanine = L-serine = L-cysteine (low Vmax) = L-threonine = L-glutamine = L-asparagine >> L-methionine ≅ glycine ≅ L-leucine > L-valine > L-glutamic acid (enhanced at low pH) |
Inhibitors (pIC50) | – | benzylcysteine 58, benzylserine 58, p-nitrophenyl glutamyl anilide 49 |
Stoichiometry | 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo-, or hetero-exchange; 95) | 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo-, or hetero-exchange; 39) |
Comments
The substrate specificity of ASCT1 may extend to L-proline and L-hydroxyproline 77. At low pH (∼5.5) both ASCT1 and ASCT2 are able to exchange acidic amino acids such as L-cysteate and glutamate 87,89. In addition to the inhibitors tabulated above, HgCl2, methylmercury, mersalyl, at low micromolar concentrations, non-competitively inhibit ASCT2 by covalent modificiation of cysteine residues 75.
SLC2 family of hexose and sugar alcohol transporters
Overview
The SLC2 family transports D-glucose, D-fructose, inositol (e.g. myo-inositol) and related hexoses. Three classes of glucose transporter can be identified, separating GLUT1-4 and 14, GLUT6, 8, 10 and 12; and GLUT5, 7, 9 and 11. Modelling suggests a 12 TM membrane topology, with intracellular termini, with functional transporters acting as homodimers or homotetramers.
Class I transporters
Overview
Class I transporters are able to transport D-glucose, but not D-fructose, in the direction of the concentration gradient and may be inhibited non-selectively by phloretin and cytochalasin B. GLUT1 is the major glucose transporter in brain, placenta and erythrocytes, GLUT2 is found in the pancreas, liver and kidneys, GLUT3 is neuronal and placental, while GLUT4 is the insulin-responsive transporter found in skeletal muscle, heart and adipose tissue. GLUT14 appears to result from gene duplication of GLUT3 and is expressed in the testes 105.
Nomenclature | Glucose transporter 1 | Glucose transporter 2 | Glucose transporter 3 | Glucose transporter 4 | Glucose transporter 14 |
Systematic nomenclature | SLC2A1 | SLC2A2 | SLC2A3 | SLC2A4 | SLC2A14 |
Common abbreviation | GLUT1 | GLUT2 | GLUT3 | GLUT4 | GLUT14 |
HGNC, UniProt | SLC2A1, P11166 | SLC2A2, P11168 | SLC2A3, P11169 | SLC2A4, P14672 | SLC2A14, Q8TDB8 |
Substrates | D-glucose = D-glucosamine 104, dehydroascorbic acid 99 | D-glucosamine > D-glucose 104 | D-glucose | D-glucosamine ≥ D-glucose 104 | – |
Radioligands (Kd) | [3H]2-deoxyglucose | [3H]2-deoxyglucose | [3H]2-deoxyglucose | [3H]2-deoxyglucose | – |
Class II transporters
Overview
Class II transporters transport D-fructose and appear to be insensitive to cytochalasin B. Class II transporters appear to be predominantly intracellularly located.
Nomenclature | Glucose transporter 6 | Glucose transporter 8 | Glucose transporter 10 | Glucose transporter 12 |
Systematic nomenclature | SLC2A6 | SLC2A8 | SLC2A10 | SLC2A12 |
Common abbreviation | GLUT6 | GLUT8 | GLUT10 | GLUT12 |
HGNC, UniProt | SLC2A6, Q9UGQ3 | SLC2A8, Q9NY64 | SLC2A10, O95528 | SLC2A12, Q8TD20 |
Substrates | – | D-glucose 101 | D-glucose 102, dehydroascorbic acid 102 | D-glucose 103 |
Proton-coupled inositol transporter
Overview
Proton-coupled inositol transporters are expressed predominantly in the brain and can be inhibited by phloretin and cytochalasin B 104.
SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)
Overview
The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide-linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).
SLC3 family
Overview
SLC3 family members are single TM proteins with extensive glycosylation of the exterior C-terminus, which heterodimerize with SLC7 family members in the endoplasmic reticulum and assist in the plasma membrane localization of the transporter.
SLC7 family
Overview
SLC7 family members may be divided into two major groups: cationic amino acid transporters (CATs) and glycoprotein-associated amino acid transporters (gpaATs).
Cationic amino acid transporters are 14 TM proteins, which mediate pH- and sodium-independent transport of cationic amino acids (system y+), apparently as an exchange mechanism. These transporters are sensitive to inhibition by N-ethylmaleimide.
Nomenclature | High affinity cationic amino acid transporter 1 | Low affinity cationic amino acid transporter 2 | Cationic amino acid transporter 3 | Cationic amino acid transporter 4 | Probable cationic amino acid transporter |
Systematic nomenclature | SLC7A1 | SLC7A2 | SLC7A3 | SLC7A4 | SLC7A14 |
Common abbreviation | CAT1 | CAT2 | CAT3 | CAT4 | – |
HGNC, UniProt | SLC7A1, P30825 | SLC7A2, P52569 | SLC7A3, Q8WY07 | SLC7A4, O43246 | SLC7A14, Q8TBB6 |
Substrates | L-arginine, L-lysine, L-ornithine, L-histidine | L-arginine, L-lysine, L-ornithine, L-histidine | L-arginine, L-lysine, L-ornithine | – | – |
Glycoprotein-associated amino acid transporters are 12 TM proteins, which heterodimerize with members of the SLC3 family to act as cell-surface amino acid exchangers.
Nomenclature | L-type amino acid transporter 1 | L-type amino acid transporter 2 | y+L amino acid transporter 1 | y+L amino acid transporter 2 | b0,+-type amino acid transporter 1 | Asc-type amino acid transporter 1 | Cystine/glutamate transporter |
Systematic nomenclature | SLC7A5 | SLC7A8 | SLC7A7 | SLC7A6 | SLC7A9 | SLC7A10 | SLC7A11 |
Common abbreviation | LAT1 | LAT2 | y+LAT1 | y+LAT2 | b0,+AT | Asc-1 | xCT |
HGNC, UniProt | SLC7A5, Q01650 | SLC7A8, Q9UHI5 | SLC7A7, Q9UM01 | SLC7A6, Q92536 | SLC7A9, P82251 | SLC7A10, Q9NS82 | SLC7A11, Q9UPY5 |
Comments
CAT4 appears to be non-functional in heterologous expression 106, while SLC7A14 has yet to be characterized.
Heterodimers between 4F2hc and LAT1 or LAT2 generate sodium-independent system L transporters. LAT1 transports large neutral amino acids including branched-chain and aromatic amino acids as well as miglustat, whereas LAT2 transports most of the neutral amino acids.
Heterodimers between 4F2hc and y+LAT1 or y+LAT2 generate transporters similar to the system y+L, which transport cationic (L-arginine, L-lysine, L-ornithine) amino acids independent of sodium and neutral (L-leucine, L-isoleucine, L-methionine, L-glutamine) amino acids in a partially sodium-dependent manner. These transporters are N-ethylmaleimide-insensitive. Heterodimers between rBAT and b0,+AT appear to mediate sodium-independent system b0,+ transport of most of the neutral amino acids and cationic amino acids (L-arginine, L-lysine and L-ornithine).
Asc-1 appears to heterodimerize with 4F2hc to allow the transport of small neutral amino acids (such as L-alanine, L-serine, L-threonine, L-glutamine and glycine), as well as D-serine, in a sodium-independent manner.
xCT generates a heterodimer with 4F2hc for a system x-e-c transporter that mediates the sodium-independent exchange of L-cystine and L-glutamic acid.
AGT has been conjugated with SLC3 members as fusion proteins to generate functional transporters, but the identity of a native heterodimer has yet to be ascertained.
SLC4 family of bicarbonate transporters
Overview
Together with the SLC26 family, the SLC4 family of transporters subserve anion exchange, principally of chloride and bicarbonate (HCO3-), but also carbonate and hydrogen sulphate (HSO4-). SLC4 family members regulate bicarbonate fluxes as part of carbon dioxide movement, chyme neutralization and reabsorption in the kidney.
Within the family, subgroups of transporters are identifiable: the electroneutral sodium-independent Cl-/HCO3- transporters (AE1, AE2 and AE3), the electrogenic sodium-dependent HCO3- transporters (NBCe1 and NBCe2) and the electroneutral HCO3- transporters (NBCn1 and NBCn2). Topographical information derives mainly from study of AE1, abundant in erythrocytes, which suggests a dimeric or tetrameric arrangement, with subunits made up of 13 TM domains and re-entrant loops at TM9/10 and TM11/12. The N terminus exhibits sites for interaction with multiple proteins, including glycolytic enzymes, haemoglobin and cytoskeletal elements.
Anion exchangers
Nomenclature | Anion exchange protein 1 | Anion exchange protein 2 | Anion exchange protein 3 | Anion exchange protein 4 |
Systematic nomenclature | SLC4A1 | SLC4A2 | SLC4A3 | SLC4A9 |
Common abbreviation | AE1 | AE2 | AE3 | AE4 |
HGNC, UniProt | SLC4A1, P02730 | SLC4A2, P04920 | SLC4A3, P48751 | SLC4A9, Q96Q91 |
Endogenous substrates | Cl-, HCO3- | Cl-, HCO3- | Cl-, HCO3- | – |
Stoichiometry | 1 Cl- (in): 1 HCO3- (out) | 1 Cl- (in): 1 HCO3- (out) | 1 Cl- (in): 1 HCO3- (out) | – |
Sodium-dependent HCO3- transporters
Nomenclature | Electrogenic sodium bicarbonate cotransporter 1 | Electrogenic sodium bicarbonate cotransporter 4 | Electroneutral sodium bicarbonate cotransporter 1 | Electroneutral sodium bicarbonate cotransporter 2 | NBCBE | NaBC1 |
Systematic nomenclature | SLC4A4 | SLC4A5 | SLC4A7 | SLC4A10 | SLC4A8 | SLC4A11 |
Common abbreviation | NBCe1 | NBCe2 | NBCn1 | NBCn2 | NDCBE | BTR1 |
HGNC, UniProt | SLC4A4, Q9Y6R1 | SLC4A5, Q9BY07 | SLC4A7, Q9Y6M7 | SLC4A10, Q6U841 | SLC4A8, Q2Y0W8 | SLC4A11, Q8NBS3 |
Endogenous substrates | NaHCO3- | NaHCO3- | NaHCO3- | NaHCO3- | Cl-, NaHCO3- | Cl-, NaHCO3- |
Stoichiometry | 1 Na+: 2/3 HCO3- (out) or 1 Na+: CO32* | 1 Na+: 2/3 HCO3- (out) or 1 Na+: CO32* | 1 Na+: 1 HCO3- (out) or 1 Na+: CO32* | 1 Na+: 1 HCO3- (out) or 1 Na: CO32* | 1 Na+: 2HCO3- (in): 1 Cl- (out) | – |
SLC5 family of sodium-dependent glucose transporters
Overview
The SLC5 family of sodium-dependent glucose transporters includes, in mammals, the Na+/substrate co-transporters for glucose (e.g. choline), D-glucose, monocarboxylates, myo-inositol and I- 121,122,142,143. Members of the SLC5 and SLC6 families, along with other unrelated Na+ cotransporters (i.e. Mhp1 and BetP), share a common structural core that contains an inverted repeat of 5TM α-helical domains 107.
Hexose transporter family
Overview
Detailed characterisation of members of the hexose transporter family is limited to SGLT1, 2 and 3, which are all inhibited in a competitive manner by phlorizin, a natural dihydrocholine glucoside, that exhibits modest selectivity towards SGLT2 (see 142 for an extensive review). SGLT1 is predominantly expressed in the small intestine, mediating the absorption of glucose (e.g. D-glucose), but also occurs in the brain, heart and in the late proximal straight tubule of the kidney. The expression of SGLT2 is almost exclusively restricted to the early proximal convoluted tubule of the kidney, where it is largely responsible for the renal reabsorption of glucose. SGLT3 is not a transporter but instead acts as a glucosensor generating an inwardly directed flux of Na+ that causes membrane depolarization 117.
Nomenclature | SGLT1 | SGLT2 | SGLT3 | SGLT4 | SGLT5 |
Systematic nomenclature | SLC5A1 | SLC5A2 | SLC5A4 | SLC5A9 | SLC5A10 |
Common abbreviation | SGLT1 | SGLT2 | SGLT3 | SGLT4 | SGLT5 |
HGNC, UniProt | SLC5A1, P13866 | SLC5A2, P31639 | SLC5A4, Q9NY91 | SLC5A9, Q2M3M2 | SLC5A10, A0PJK1 |
Substrates | D-glucose, α-MDG, D-galactose | D-glucose, α-MDG | D-glucose, N-ethyl-1-deoxynojirimycin, 1-deoxynojirimycin, 1-deoxynojirimycin-1-sulfonic acid, miglustat, miglitol | D-glucose, α-MDG, D-mannose | D-glucose, D-galactose |
Inhibitors (pIC50) | remogliflozin (pKi 5.4), sergliflozin (pKi 5.1), canagliflozin (6.4), dapagliflozin (5.9), empagliflozin (5.1) | remogliflozin (pKi 7.9), sergliflozin (pKi 6.8), dapagliflozin (9.0), canagliflozin (8.7), empagliflozin (8.5) | – | – | – |
Stoichiometry | 2 Na+: 1 glucose 129 | 1 Na+: 1 glucose 127 | – | – | – |
Comments
Recognition and transport of substrate by SGLTs requires that the sugar is a pyranose. De-oxyglucose derivatives have reduced affinity for SGLT1, but the replacement of the sugar equatorial hydroxyl group by fluorine at some positions, excepting C2 and C3, is tolerated (see 142 for a detailed quantification). Although SGLT1 and SGLT2 have been described as high- and low-affinity sodium glucose co-transporters, respectively, recent work suggests that they have a similar affinity for glucose under physiological conditions 127. Selective blockers of SGLT2, and thus blocking ∼50% of renal glucose reabsorption, are in use and in further development for the treatment of diabetes (e.g. 113).
Choline transporter
Overview
The high affinity, hemicholinium-3-sensitive, choline transporter (CHT) is expressed mainly in cholinergic neurones on nerve cell terminals and synaptic vesicles (keratinocytes being an additional location). In autonomic neurones, expression of CHT requires an activity-dependent retrograde signal from postsynaptic neurones 130. Through recapture of choline generated by the hydrolysis of ACh by acetylcholinesterase, CHT serves to maintain acetylcholine synthesis within the presynaptic terminal 121. Homozygous mice engineered to lack CHT die within one hour of birth as a result of hypoxia arising from failure of transmission at the neuromuscular junction of the skeletal muscles that support respiration 120. A low affinity choline uptake mechanism that remains to be identified at the molecular level may involve multiple transporters. In addition, a family of choline transporter-like (CTL) proteins, (which are members of the SLC44 family) with weak Na+ dependence have been described 140.
Nomenclature | CHT |
Systematic nomenclature | SLC5A7 |
Common abbreviation | CHT |
HGNC, UniProt | SLC5A7, Q9GZV3 |
Endogenous substrates | choline |
Substrates | triethylcholine |
Selective inhibitors (pIC50) | hemicholinium-3 (pKi 8.3 – 9.0) |
Radioligands (Kd) | [3H]hemicholinium-3 (4x10-9 – 6x10-9 M) |
Stoichiometry | Na+: choline (variable stoichimetry); modulated by extracellular Cl- 128 |
Comments
Ki and KD values for hemicholinium-3 listed in the table are for human CHT expressed in Xenopus laevis oocytes 133, or COS-7 cells 109. hemicholinium mustard is a substrate for CHT that causes covalent modification and irreversible inactivation of the transporter. Several exogenous substances (e.g. triethylcholine) that are substrates for CHT act as precursors to cholinergic false transmitters.
Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monocarboxylate transporters
Overview
The sodium-iodide symporter (NIS) is an iodide transporter found principally in the thyroid gland where it mediates the accumulation of I- within thyrocytes. Transport of I- by NIS from the blood across the basolateral membrane followed by apical efflux into the colloidal lumen, mediated at least in part by pendrin (SLC22A4), and most likely not SMCT1 (SLC5A8) as once thought, provides the I- required for the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) 111. NIS is also expressed in the salivary glands, gastric mucosa, intestinal enterocytes and lactating breast. NIS mediates I- absorption in the intestine and I- secretion into the milk. SMVT is expressed on the apical membrane of intestinal enterocytes and colonocytes and is the main system responsible for biotin (vitamin H) and pantothenic acid (vitamin B5) uptake in humans 135. SMVT located in kidney proximal tubule epithelial cells mediates the reabsorption of biotin and pantothenic acid. SMCT1 (SLC5A8), which transports a wide range of monocarboxylates, is expressed in the apical membrane of epithelia of the small intestine, colon, kidney, brain neurones and the retinal pigment epithelium 122. SMCT2 (SLC5A12) also localises to the apical membrane of kidney, intestine, and colon, but in the brain and retina is restricted to astrocytes and Müller cells, respectively 122. SMCT1 is a high-affinity transporter whereas SMCT2 is a low-affinity transporter. The physiological substrates for SMCT1 and SMCT2 are lactate (L-lactic acid and D-lactic acid), pyruvic acid, propanoic acid, and nicotinic acid in non-colonic tissues such as the kidney. SMCT1 is also likely to be the principal transporter for the absorption of nicotinic acid (vitamin B3) in the intestine and kidney 124. In the small intestine and colon, the physiological substrates for these transporters are nicotinic acid and the short-chain fatty acids acetic acid, propanoic acid, and butyric acid that are produced by bacterial fermentation of dietary fiber 132. In the kidney, SMCT2 is responsible for the bulk absorption of lactate because of its low-affinity/high-capacity nature. Absence of both transporters in the kidney leads to massive excretion of lactate in urine and consequently drastic decrease in the circulating levels of lactate in blood 138. SMCT1 also functions as a tumour suppressor in the colon as well as in various other non-colonic tissues 123. The tumour-suppressive function of SMCT1 is based on its ability to transport pyruvic acid, an inhibitor of histone deacetylases, into cells in non-colonic tissues 139; in the colon, the ability of SMCT1 to transport butyric acid and propanoic acid, also inhibitors of histone deacetylases, underlies the tumour-suppressive function of this transporter 122,123,125. The ability of SMCT1 to promote histone acetylase inhibition through accumulation of butyric acid and propanoic acid in immune cells is also responsible for suppression of dendritic cell development in the colon 137.
Nomenclature | NIS | SMVT | SMCT1 | SMCT2 |
Systematic nomenclature | SLC5A5 | SLC5A6 | SLC5A8 | SLC5A12 |
Common abbreviation | NIS | SMVT | SMCT1 | SMCT2 |
HGNC, UniProt | SLC5A5, Q92911 | SLC5A6, Q9Y289 | SLC5A8, Q8N695 | SLC5A12, Q1EHB4 |
Substrates | NO3-, pertechnetate, perchlorate, thiocyanate, I- | pantothenic acid 116, I- 116, biotin 116, lipoic acid 116 | acetic acid, butyric acid, propanoic acid, nicotinic acid, β-D-hydroxybutyric acid, L-lactic acid, D-lactic acid, salicylic acid, 3-bromopyruvate, dichloroacetate, 2-oxothiazolidine-4-carboxylate, acetoacetic acid, benzoate, 5-aminosalicylate, α-ketoisocaproate, β-L-hydroxybutyric acid, pyroglutamic acid, γ-hydroxybutyric acid, pyruvic acid | nicotinic acid, L-lactic acid, pyruvic acid |
Inhibitors (pIC50) | – | – | fenoprofen, ketoprofen, ibuprofen (4.2) | – |
Stoichiometry | 2Na+: 1 I- 119; 1Na+: 1 ClO4- 118 | 2Na+: 1 biotin (or pantothenic acid) 134 | 2Na+: 1 monocarboxylate 114 | – |
Comments
I-, perchlorate, thiocyanate and NO3- are competitive substrate inhibitors of NIS 118. lipoic acid appears to act as a competitive substrate inhibitor of SMVT 141 and the anticonvulsant drugs primidone and carbamazepine competitively block the transport of biotin by brush border vesicles prepared from human intestine 136.
Sodium myo-inositol cotransporter transporters
Overview
Three different mammalian myo-inositol cotransporters are currently known; two are the Na+-coupled SMIT1 and SMIT2 tabulated below and the third is proton-coupled HMIT (SLC2A13). SMIT1 and SMIT2 have a widespread and overlapping tissue location but in polarized cells, such as the Madin-Darby canine kidney cell line, they segregate to the basolateral and apical membranes, respectively 110. In the nephron, SMIT1 mediates myo-inositol uptake as a ‘compatible osmolyte’ when inner medullary tubules are exposed to increases in extracellular osmolality, whilst SMIT2 mediates the reabsorption of myo-inositol from the filtrate. In some species (e.g. rat, but not rabbit) apically located SMIT2 is responsible for the uptake of myo-inositol from the intestinal lumen 108.
Nomenclature | SMIT | SGLT6 |
Systematic nomenclature | SLC5A3 | SLC5A11 |
Common abbreviation | SMIT1 | SMIT2 |
HGNC, UniProt | SLC5A3, P53794 | SLC5A11, Q8WWX8 |
Substrates | myo-inositol, scyllo-inositol > L-fucose > L-xylose > L-glucose, D-glucose, α-methyl-D-glucopyranoside > D-galactose, D-fucose > D-xylose 126 | myo-inositol = D-chiro-inositol> D-glucose > D-xylose > L-xylose 115 |
Inhibitors (pIC50) | phlorizin | phlorizin |
Stoichiometry | 2 Na+ :1 myo-inositol 126 | 2 Na+ :1 myo-inositol 112 |
Comments
The data tabulated are those for dog SMIT1 and rabbit SMIT2. SMIT2 transports D-chiro-inositol, but SMIT1 does not. In addition, whereas SMIT1 transports both D-xylose and L-xylose and D-fucose and L-fucose, SMIT2 transports only the D-isomers of these sugars 115,126. Thus the substrate specificities of SMIT1 (for L-fucose ) and SMIT2 (for D-chiro-inositol) allow discrimination between the two SMITs. Human SMIT2 appears not to transport glucose 131.
SLC6 neurotransmitter transporter family
Overview
Members of the solute carrier family 6 (SLC6) of sodium- and (sometimes chloride-) dependent neurotransmitter transporters 152,156,179 are primarily plasma membrane located and may be divided into four subfamilies that transport monoamines, GABA, glycine and neutral amino acids, plus the related bacterial NSS transporters 189. The members of this superfamily share a structural motif of 10 TM segments that has been observed in crystal structures of the NSS bacterial homolog LeuTAa, a Na+-dependent amino acid transporter from Aquiflex aeolicus 206 and in several other transporter families structurally related to LeuT 164.
Monoamine transporter subfamily
Overview
Monoamine neurotransmission is limited by perisynaptic transporters. Presynaptic monoamine transporters allow recycling of synaptically released noradrenaline, dopamine and 5-hydroxytryptamine (5-HT).
Nomenclature | Noradrenaline transporter | Dopamine transporter | 5HT transporter |
Systematic nomenclature | SLC6A2 | SLC6A3 | SLC6A4 |
Common abbreviation | NET | DAT | SERT |
HGNC, UniProt | SLC6A2, P23975 | SLC6A3, Q01959 | SLC6A4, P31645 |
Endogenous substrates | (-)-adrenaline, (-)-noradrenaline, dopamine | (-)-adrenaline, (-)-noradrenaline, dopamine | 5-HT |
Substrates | MPP+, methamphetamine, amphetamine | MPP+, methamphetamine, amphetamine | MDMA, p-chloroamphetamine |
Selective inhibitors (pIC50) | mazindol (pKi 8.9), nisoxetine (pKi 8.4), nomifensine (pKi 8.1), reboxetine (pKi 8.0) 205 | mazindol (pKi 8.0), WIN35428 (pKi 7.9), GBR12935 (pKi 7.6) | paroxetine (pKi 9.6) 198, sertraline (pKi 9.1), fluoxetine (pKi 8.5) 198 |
Radioligands (Kd) | [3H]mazindol (5x10-10 M), [3H]nisoxetine (4x10-9 M) | [3H]GBR12935 (3x10-9 M) 186, [3H]WIN35428 (1x10-8 M) 186 | [3H]paroxetine (2x10-10 M), [3H]citalopram (5x10-9 M) |
Stoichiometry | 1 noradrenaline: 1 Na+:1 Cl- 171 | 1 dopamine: 1–2 Na+: 1 Cl- 170 | 1 5-HT:1 Na+:1 Cl- (in), + 1 K+ (out) 197 |
Comments
[125I]RTI55 labels all three monoamine transporters (NET, DAT and SERT) with affinities between 0.5 and 5 nM. cocaine is an inhibitor of all three transporters with pKi values between 6.5 and 7.2. Potential alternative splicing sites in non-coding regions of SERT and NET have been identified. A bacterial homologue of SERT shows allosteric modulation by selected anti-depressants 194.
GABA transporter subfamily
Overview
The activity of GABA-transporters located predominantly upon neurones (GAT-1), glia (GAT-3) or both (GAT-2, BGT-1) serves to terminate phasic GABA-ergic transmission, maintain low ambient extracellular concentrations of GABA, and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of GABA are sufficient to sustain tonic inhibition mediated by high affinity GABAA receptors in certain neuronal populations 192. GAT1 is the predominant GABA transporter in the brain and occurs primarily upon the terminals of presynaptic neurones and to a much lesser extent upon distal astocytic processes that are in proximity to axons terminals. GAT3 resides predominantly on distal astrocytic terminals that are close to the GABAergic synapse. By contrast, BGT1 occupies an extrasynaptic location possibly along with GAT2 which has limited expression in the brain 181. TauT is a high affinity taurine transporter involved in osmotic balance that occurs in the brain and non-neuronal tissues, such as the kidney, brush border membrane of the intestine and blood brain barrier 156,172. CT1, which transports creatine, has a ubiquitous expression pattern, often co-localizing with creatine kinase 156.
Nomenclature | GAT1 | GAT2 | GAT3 | BGT1 | TauT | CT1 |
Systematic nomenclature | SLC6A1 | SLC6A13 | SLC6A11 | SLC6A12 | SLC6A6 | SLC6A8 |
HGNC, UniProt | SLC6A1, P30531 | SLC6A13, Q9NSD5 | SLC6A11, P48066 | SLC6A12, P48065 | SLC6A6, P31641 | SLC6A8, P48029 |
Endogenous substrates | GABA | GABA, β-alanine | GABA, β-alanine | GABA, betaine | GABA 145, β-alanine, taurine | creatine |
Substrates | nipecotic acid, guvacine | nipecotic acid, guvacine | nipecotic acid, guvacine | – | – | – |
Selective inhibitors (pIC50) | SKF89976A (6.9), CI-966 (6.6), NNC-711 (5.9 – 6.9), tiagabine (5.6 – 7.0), LU32-176B (5.4), (R/S) EF-1500 (4.9 – 5.7), (R)-EF-1520 (5.05 – 5.4), (S)-EF-1520 (3.6 – 3.92) | SNAP-5114 (5.2), SNAP-5114 (4.7) | – | NNC052090 (5.6), (R/S) EF-1500 (4.9), (R)-EF-1520 (3.74 – 4.66), (S)-EF-1520 (3.6 – 4.47), LU32-176B (4.0) | – | – |
Radioligands (Kd) | [3H]tiagabine | – | – | – | – | – |
Stoichiometry | 2Na+: 1Cl-: 1GABA | 2Na+: 1Cl-:1GABA | ≥ 2Na+: 2 Cl-: 1GABA | 3Na+: 1 (or 2) Cl-: 1GABA | 2Na+: 1Cl-: 1 taurine | Probably 2Na+: 1Cl-: 1 creatine |
Comments
The IC50 values for GAT1-4 reported in the table reflect the range reported in the literature from studies of both human and mouse transporters. There is a tendency towards lower IC50 values for the human orthologue 180. SNAP-5114 is only weakly selective for GAT 2 and GAT3, with IC50 values in the range 22 to >30 μM at GAT1 and BGT1, whereas NNC052090 has at least an order of magnitude selectivity for BGT1 [see 157,191 for reviews]. (R)-(1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}pyrrolidin-2-yl)acetic acid is a recently described compound that displays 20-fold selectivity for GAT3 over GAT1 165. In addition to the inhibitors listed, EGYT3886 is a moderately potent, though non-selective, inhibitor of all cloned GABA transporters (IC50 = 26-46 μM; 160). Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine that potently inhibit the uptake of [3H]GABA into rat synaptosomes have been described 178. Several derivatives of exo-THPO (e.g. N-methyl-exo-THPO and N-acetyloxyethyl-exo-THPO) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of GABA [see 157,190 for reviews]. GAT3 is inhibited by physiologically relevant concentrations of Zn2+ 158. TauT transports GABA, but with low affinity, but CT1 does not, although it can be engineered to do so by mutagenesis guided by LeuT as a structural template 161. Although inhibitors of creatine transport by CT1 (e.g. β-guanidinopropionic acid, cyclocreatine, guanidinoethane sulfonic acid) are known (e.g. 159) they insufficiently characterized to be included in the table.
Glycine transporter subfamily
Overview
Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 (a,b,c,d & e) differing in their N- and C-termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 (a,b & c) have also been identified (see 148,163,167,196 for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic glycine concentrations influencing NMDA receptor-mediated neurotransmission 147,166, but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses 168. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycinergic signalling and die within the first postnatal day 168,199. Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action 207. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission 169,188. Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week 169 and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by 173). ATB0+ (SLCA14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity 156. ATB0+ is expressed in various peripheral tissues 156. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of L-proline.
Nomenclature | Glycine transporter 1 | Glycine transporter 2 | ATB0,+ | Proline transporter |
Systematic nomenclature | SLC6A9 | SLC6A5 | SLC6A14 | SLC6A7 |
Common abbreviation | GlyT1 | GlyT2 | ATB0,+ | PROT |
HGNC, UniProt | SLC6A9, P48067 | SLC6A5, Q9Y345 | SLC6A14, Q9UN76 | SLC6A7, Q99884 |
Endogenous substrates | glycine, sarcosine | glycine | L-isoleucine > L-leucine, L-methionine > L-phenylalanine > L-tryptophan > L-valine > L-serine 195, β-alanine 144,145 | L-proline |
Substrates | – | – | 1-methyltryptophan 177, BCH, valganciclovir 200, zwitterionic or cationic NOS inhibitors 174 | – |
Selective inhibitors (pIC50) | (R)-NFPS (8.5 – 9.1), SSR-103800 (8.7), N-methyl-SSR504734 (8.6), LY2365109 (7.8), GSK931145 (7.6) | ALX 1393, ALX 1405, Org 25543 (7.7) | α-methyl-D,L-tryptophan (3.6) 177 | LP-403812 (7.0) 208 |
Radioligands (Kd) | [3H](R)-NPTS (1x10-9 M), [3H]GSK931145 (1.7x10-9 M), [35S]ACPPB (2x10-9 M), [3H]SB-733993 (2.2x10-9 M), [3H]N-methyl-SSR504734 (3.3x10-9 – 8.1x10-9 M), [3H]NFPS (7x10-9 – 2.1x10-8 M) | – | – | – |
Stoichiometry | 2 Na+: 1 Cl-: 1 glycine | 3 Na+: 1 Cl-: 1 glycine | 2-3 Na+: 1 Cl-: 1 amino acid 195 | Probably 2 Na+: 1 Cl-: 1 L-proline |
Comment | – | N-Oleoyl-L-carnitine (0.3μM, 155) and and N-arachidonoylglycine (IC50 5-8 μM, 204) have been described as potential endogenous selective GlyT2 inhibitors | – | – |
Comments
sarcosine is a selective transportable inhibitor of GlyT1 and also a weak agonist at the glycine binding site of the NMDA receptor 210, but has no effect on GlyT2. This difference has been attributed to a single glycine residue in TM6 (serine residue in GlyT2) 202. Inhibition of GLYT1 by the sarcosine derivatives NFPS, NPTS and Org 24598 is non-competitive 182,183. IC50 values for Org 24598 reported in the literature vary, most likely due to differences in assay conditions 149,182. The tricyclic antidepressant amoxapine weakly inhibits GlyT2 (IC50 92 μM) with approximately 10-fold selectivity over GlyT1 184. The endogenous lipids arachidonic acid and anandamide exert opposing effects upon GlyT1a, inhibiting (IC50 ∼ 2 μM) and potentiating (EC50 ∼ 13 μM) transport currents, respectively 185. N-arachidonyl-glycine, N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-D-alanine have been described as endogenous non-competitive inhibitors of GlyT2a, but not GlyT1b 162,175,204. Protons 146 and Zn2+ 176 act as non-competitive inhibitors of GlyT1b, with IC50 values of ∼100 nM and ∼10 μM respectively, but neither ion affects GlyT2 (reviewed by 201). Glycine transport by GLYT1 is inhibited by lithium, whereas GLYT2 transport is stimulated (both in the presence of Na+) 187.
Neutral amino acid transporter subfamily
Overview
Certain members of neutral amino acid transport family are expressed upon the apical surface of epithelial cells and are important for the absorption of amino acids from the duodenum, jejunum and ileum and their reabsorption within the proximal tubule of the nephron (i.e. B0AT1 (SLC6A19), SLC6A17, SLC6A18, SLC6A20). Others may function as transporters for neurotransmitters or their precursors (i.e. B0AT2, SLC6A17) 153.
Nomenclature | B0AT1 | B0AT2 | B0AT3 | NTT5 | NTT4 | SIT1 |
Systematic nomenclature | SLC6A19 | SLC6A15 | SLC6A18 | SLC6A16 | SLC6A17 | SLC6A20 |
HGNC, UniProt | SLC6A19, Q695T7 | SLC6A15, Q9H2J7 | SLC6A18, Q96N87 | SLC6A16, Q9GZN6 | SLC6A17, Q9H1V8 | SLC6A20, Q9NP91 |
Endogenous substrates | L-leucine, L-methionine, L-isoleucine, L-valine > L-asparagine, L-phenylalanine, L-alanine, L-serine > L-threonine, glycine, L-proline 152 | L-proline > L-alanine, L-valine, L-methionine, L-leucine > L-isoleucine, L-threonine, L-asparagine, L-serine, L-phenylalanine > glycine 152 | L-alanine, glycine > L-methionine, L-phenylalanine, L-leucine, L-histidine, L-glutamine 203 | – | L-leucine, L-methionine, L-proline > L-cysteine, L-alanine, L-glutamine, L-serine > L-histidine, glycine 209 | L-proline |
Stoichiometry | 1 Na+: 1 amino acid 154 | 1 Na+: 1 amino acid 151 | Na+- and Cl- -dependent transport 193 | – | Na+-dependent, Cl--independent transport 209 | 2 Na+: 1 Cl-: 1 imino acid 150 |
Comment | Mutations in B0AT1 are associated with Hartnup disorder | – | – | – | – | – |
SLC8 family of sodium/calcium exchangers
Overview
The sodium/calcium exchangers (NCX) use the extracellular sodium concentration to facilitate the extrusion of calcium out of the cell. Alongside the plasma membrane Ca2+-ATPase (PMCA) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), as well as the sodium/potassium/calcium exchangers (NKCX, SLC24 family), NCX allow recovery of intracellular calcium back to basal levels after cellular stimulation. When intracellular sodium ion levels rise, for example, following depolarisation, these transporters can operate in the reverse direction to allow calcium influx and sodium efflux, as an electrogenic mechanism. Structural modelling suggests the presence of 9 TM segments, with a large intracellular loop between the fifth and sixth TM segments.
Nomenclature | Sodium/calcium exchanger 1 | Sodium/calcium exchanger 2 | Sodium/calcium exchanger 3 |
Systematic nomenclature | SLC8A1 | SLC8A2 | SLC8A3 |
Common abbreviation | NCX1 | NCX2 | NCX3 |
HGNC, UniProt | SLC8A1, P32418 | SLC8A2, Q9UPR5 | SLC8A3, P57103 |
Stoichiometry | 3 Na+ (in): 1 Ca2+ (out) or 4 Na+ (in): 1 Ca2+ (out) 211; Reverse mode 1 Ca2+ (in): 1 Na+ (out) | – | – |
Comments
Although subtype-selective inhibitors of NCX function are not widely available, 3,4–dichlorobenzamil and CBDMB act as non-selective NCX inhibitors, while SEA0400, KB-R7943, SN6 and ORM-10103 212 act to inhibit NCX function selectively.
SLC9 family of sodium/hydrogen exchangers
Overview
Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Na+ (in): 1 H+ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellular membranes 215–217. Li+ and NH4+, but not K+, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C-terminus containing multiple regulatory sites.
NHE1 is considered to be a ubiquitously-expressed ‘housekeeping’ transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm 220 and osteoclasts 214; gene disruption results in infertile male mice 220.
Nomenclature | Systematic nomenclature | Common abbreviation | HGNC, UniProt |
Sodium/hydrogen exchanger 1 | SLC9A1 | NHE1 | SLC9A1, P19634 |
Sodium/hydrogen exchanger 2 | SLC9A2 | NHE2 | SLC9A2, Q9UBY0 |
Sodium/hydrogen exchanger 3 | SLC9A3 | NHE3 | SLC9A3, P48764 |
Sodium/hydrogen exchanger 4 | SLC9A4 | NHE4 | SLC9A4, Q6AI14 |
Sodium/hydrogen exchanger 5 | SLC9A5 | NHE5 | SLC9A5, Q14940 |
Sodium/hydrogen exchanger 6 | SLC9A6 | NHE6 | SLC9A6, Q92581 |
Sodium/hydrogen exchanger 7 | SLC9A7 | NHE7 | SLC9A7, Q96T83 |
Sodium/hydrogen exchanger 8 | SLC9A8 | NHE8 | SLC9A8, Q9Y2E8 |
Sodium/hydrogen exchanger 9 | SLC9A9 | NHE9 | SLC9A9, Q8IVB4 |
solute carrier family 9, subfamily B (NHA1, cation proton antiporter 1), member 1 | SLC9B1 | NHA1 | SLC9B1, Q4ZJI4 |
solute carrier family 9, subfamily B (NHA2, cation proton antiporter 2), member 2 | SLC9B2 | NHA2 | SLC9B2, Q86UD5 |
Sodium/hydrogen exchanger 10 | SLC9C1 | Sperm-NHE | SLC9C1, Q4G0N8 |
Sodium/hydrogen exchanger 11 | SLC9C2 | NHE11 | SLC9C2, Q5TAH2 |
Comments
Analogues of the non-selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Na+ binding site. The more selective amiloride analogues MPA and EIPA exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 213,218,219.
SLC10 family of sodium-bile acid co-transporters
Overview
The SLC10 family transport bile acids, sulphated solutes, and other xenobiotics in a sodium-dependent manner. The founding members, SLC10A1 (NTCP) and SLC10A2 (ASBT) function, along with members of the ABC transporter family (MDR1/ABCB1, BSEP/ABCB11 and MRP2/ABCC2) and the organic solute transporter obligate heterodimer OSTα:OSTβ (SLC51), to maintain the enterohepatic circulation of bile acids 225,234. SLC10A6 (SOAT) functions as a sodium-dependent transporter of sulphated solutes included sulfphated steroids and bile acids 228,230. Transport function has not yet been demonstrated for the 4 remaining members of the SLC10 family, SLC10A3 (P3), SLC10A4 (P4), SLC10A5 (P5), and SLC10A7 (P7), and the identity of their endogenous substrates remain unknown 227,230,231,237. Members of the SLC10 family are predicted to have seven transmembrane domains with an extracellular N-terminus and cytoplasmic C-terminus 221,232.
Nomenclature | Sodium/bile acid and sulphated solute cotransporter 1 | Sodium/bile acid and sulphated solute cotransporter 2 | Sodium/bile acid and sulphated solute cotransporter 6 |
Systematic nomenclature | SLC10A1 | SLC10A2 | SLC10A6 |
Common abbreviation | NTCP | ASBT | SOAT |
HGNC, UniProt | SLC10A1, Q14973 | SLC10A2, Q12908 | SLC10A6, Q3KNW5 |
Substrates | tauroursodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid > GCA > cholic acid 235 | GDCA > GUDCA, GCDA > taurocholic acid > cholic acid 224 | pregnenolone sulphate 228, dehydroepiandrosterone sulphate 230, taurolithocholic acid-3-sulphate, estrone-3-sulphate |
Endogenous substrates | T3, dehydroepiandrosterone sulphate 224,227,235, estrone-3-sulphate, iodothyronine sulphates | – | – |
Radioligands (Kd) | – | [3H]taurocholic acid 224 | – |
Stoichiometry | 2 Na+: 1 bile acid 221,228 | >1 Na+: 1 bile acid 224,238 | – |
Comment | chenodeoxycholyl-Nε-nitrobenzoxadiazol-lysine is a fluorescent bile acid analogue used as a probe 229. | – | – |
Inhibitors (pIC50) | cyclosporin A 226,233, irbesartan 226, propranolol 224 | SC-435 (8.82) 222, 264W94 (7.32) 236,239 | – |
Nomenclature | Sodium/bile acid and sulphated solute cotransporter 3 | Sodium/bile acid and sulphated solute cotransporter 4 | Sodium/bile acid and sulphated solute cotransporter 5 | Sodium/bile acid and sulphated solute cotransporter 7 |
Systematic nomenclature | SLC10A3 | SLC10A4 | SLC10A5 | SLC10A7 |
Common abbreviation | P3 | P4 | P5 | P7 |
HGNC, UniProt | SLC10A3, P09131 | SLC10A4, Q96EP9 | SLC10A5, Q5PT55 | SLC10A7, Q0GE19 |
Comments
Heterologously expressed SLC10A4 229 or SLC10A7 231 failed to exhibit significant transport of taurocholic acid, pregnenolone sulphate, DHEAS or choline. SLC10A4 has recently been suggested to associate with neuronal vesicles 223.
SLC11 family of proton-coupled metal ion transporters
Overview
The family of proton-coupled metal ion transporters are responsible for movements of divalent cations, particularly ferrous and manganese ions, across the cell membrane (SLC11A2/DMT1) and across endosomal (SLC11A2/DMT1) or lysosomal/phagosomal membranes (SLC11A1/NRAMP1), dependent on proton transport. Both proteins appear to have 12 TM regions and cytoplasmic N- and C- termini. NRAMP1 is involved in antimicrobial action in macrophages, although its precise mechanism is undefined. Facilitated diffusion of divalent cations into phagosomes may increase intravesicular free radicals to damage the pathogen. Alternatively, export of divalent cations from the phagosome may deprive the pathogen of essential enzyme cofactors. SLC11A1/DMT1 is more widely expressed and appears to assist in divalent cation assimilation from the diet, as well as in phagocytotic cells.
Comments
Loss-of-function mutations in NRAMP1 are associated with increased susceptibility to microbial infection (OMIM: 607948). Loss-of-function mutations in DMT1 are associated with microcytic anemia (OMIM: 206100).
SLC12 family of cation-coupled chloride transporters
Overview
The SLC12 family of chloride transporters contribute to ion fluxes across a variety of tissues, particularly in the kidney and choroid plexus of the brain. Within this family, further subfamilies are identifiable: NKCC1, NKCC2 and NCC constitute a group of therapeutically-relevant transporters, targets for loop and thiazide diuretics. These 12 TM proteins exhibit cytoplasmic termini and an extended extracellular loop at TM7/8 and are kidney-specific (NKCC2 and NCC) or show a more widespread distribution (NKCC1). A second family, the K-Cl co-transporters are also 12 TM domain proteins with cytoplasmic termini, but with an extended extracellular loop at TM 5/6. CCC6 exhibits structural similarities with the K-Cl co-transporters, while CCC9 is divergent, with 11 TM domains and a cytoplasmic N-terminus and extracellular C-terminus.
Nomenclature | Kidney-specific Na-K-Cl symporter | Basolateral Na-K-Cl symporter | Na-Cl symporter |
Systematic nomenclature | SLC12A1 | SLC12A2 | SLC12A3 |
Common abbreviation | NKCC2 | NKCC1 | NCC |
HGNC, UniProt | SLC12A1, Q13621 | SLC12A2, P55011 | SLC12A3, P55017 |
Inhibitors (pIC50) | bumetanide 242, furosemide 242, piretanide 242 | bumetanide 242, furosemide 242, piretanide 242 | chlorothiazide, hydrochlorothiazide, metolazone |
Stoichiometry | 1 Na+: 1 K+: 2 Cl- (in) | 1 Na+: 1 K+: 2 Cl- (in) | 1 Na+: 1 Cl- (in) |
Nomenclature | K-Cl cotransporter 1 | K-Cl cotransporter 2 | K-Cl cotransporter 3 | K-Cl cotransporter 4 |
Systematic nomenclature | SLC12A4 | SLC12A5 | SLC12A6 | SLC12A7 |
Common abbreviation | KCC1 | KCC2 | KCC3 | KCC4 |
HGNC, UniProt | SLC12A4, Q9UP95 | SLC12A5, Q9H2X9 | SLC12A6, Q9UHW9 | SLC12A7, Q9Y666 |
Inhibitors (pIC50) | DIOA | DIOA, VU0240551 241 | DIOA | DIOA |
Stoichiometry | 1 K+: 1 Cl- (out) | 1 K+: 1 Cl- (out) | 1 K+: 1 Cl- (out) | 1 K+: 1 Cl- (out) |
Nomenclature | Cation-chloride cotransporter 9 | Cation-chloride cotransporter 6 |
Systematic nomenclature | SLC12A8 | SLC12A9 |
Common abbreviation | CCC9 | CCC6 |
HGNC, UniProt | SLC12A8, A0AV02 | SLC12A9, Q9BXP2 |
Substrates | spermine, L-glutamic acid, spermidine, L-aspartic acid | – |
Stoichiometry | Unknown | – |
Comment | – | CCC6 is regarded as an orphan transporter |
Comments
DIOA is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR 243.
SLC13 family of sodium-dependent sulphate/carboxylate transporters
Overview
Within the SLC13 family, two groups of transporters may be differentiated on the basis of the substrates transported: NaS1 and NaS2 convey sulphate, while NaC1-3 transport carboxylates. NaS1 and NaS2 transporters are made up of 13 TM domains, with an intracellular N terminus and are electrogenic with physiological roles in the intestine, kidney and placenta. NaC1, NaC2 and NaC3 are made up of 11 TM domains with an intracellular N terminus and are electrogenic, with physiological roles in the kidney and liver.
Nomenclature | Na+/sulfate cotransporter | Na+/dicarboxylate cotransporter 1 | Na+/dicarboxylate cotransporter 3 | Na+/sulfate cotransporter | Na+/citrate cotransporter |
Systematic nomenclature | SLC13A1 | SLC13A2 | SLC13A3 | SLC13A4 | SLC13A5 |
Common abbreviation | NaS1 | NaC1 | NaC3 | NaS2 | NaC2 |
HGNC, UniProt | SLC13A1, Q9BZW2 | SLC13A2, Q13183 | SLC13A3, Q8WWT9 | SLC13A4, Q9UKG4 | SLC13A5, Q86YT5 |
Endogenous substrates | SeO42-, S2O32-, SO42- | citric acid, succinic acid | citric acid, succinic acid | SO42- | citric acid, pyruvic acid |
Stoichiometry | 3 Na+: 1 SO42- (in) | 3 Na+: 1 dicarboxylate2- (in) | Unknown | 3 Na+: SO42- (in) | Unknown |
SLC14 family of facilitative urea transporters
Overview
As a product of protein catabolism, urea is moved around the body and through the kidneys for excretion. Although there is experimental evidence for concentrative urea transporters, these have not been defined at the molecular level. The SLC14 family are facilitative transporters, allowing urea movement down its concentration gradient. Multiple splice variants of these transporters have been identified; for UT-A transporters, in particular, there is evidence for cell-specific expression of these variants with functional impact 245. Topographical modelling suggests that the majority of the variants of SLC14 transporters have 10 TM domains, with a glycosylated extracellular loop at TM5/6, and intracellular C- and N-termini. The UT-A1 splice variant, exceptionally, has 20 TM domains, equivalent to a combination of the UT-A2 and UT-A3 splice variants.
Nomenclature | Erythrocyte urea transporter | Kidney urea transporter |
Systematic nomenclature | SLC14A1 | SLC14A2 |
Common abbreviation | UT-B | UT-A |
HGNC, UniProt | SLC14A1, Q13336 | SLC14A2, Q15849 |
Endogenous substrates | ammonium carbonate 246, urea 246, formamide 246 | urea 244 |
Substrates | acrylamide 246, acetamide 246, methylurea 246 | – |
Stoichiometry | Equilibrative | Equilibrative |
SLC15 family of peptide transporters
Overview
The SLC15 family of peptide transporters may be divided on the basis of structural and functional differences into two subfamilies: SLC15A1 (PepT1) and SLC15A2 (PepT2) transport di- and tripeptides, but not amino acids, whereas SLC15A3 (PHT2) and SLC15A4 (PHT1) transport L-histidine and some di- and tripeptides 251. The transporters are 12 TM proteins with intracellular termini and an extended extracellular loop at TM 9/10. The crystal structure of PepTSo (a prokaryote homologue of PepT1 and PepT2 from Shewanella oneidensis) confirms many of the predicted structural features of mammalian PepT1 and PepT2 261.
PHT1 has been suggested to be intracellular 262, while PHT2 protein is located on lysosomes in transfected cells 250,257,264. PHT1 is hypothesised to mediate efflux of bacterial-derived peptides into the cytosol perhaps in the colon where SLC15A4 mRNA expression is increased in inflammatory bowel disease 259. Transport via PHT1 may be important in immune responses as both Toll-like receptor- and NOD1-mediated responses are reduced in PHT1 knockout mice or mouse strains expressing mutations in PHT1 249,265.
Nomenclature | Peptide transporter 1 | Peptide transporter 2 | Peptide transporter 3 | Peptide transporter 4 |
Systematic nomenclature | SLC15A1 | SLC15A2 | SLC15A3 | SLC15A4 |
Common abbreviation | PepT1 | PepT2 | PHT2 | PHT1 |
HGNC, UniProt | SLC15A1, P46059 | SLC15A2, Q16348 | SLC15A3, Q8IY34 | SLC15A4, Q8N697 |
Endogenous substrates | 5-aminolevulinic acid 253, dipeptides 253, tripeptides 253 | 5-aminolevulinic acid, dipeptides, tripeptides | L-histidine, carnosine, dipeptides, tripeptides | L-histidine, carnosine, dipeptides, tripeptides |
Substrates | fMet-Leu-Phe 260, cyclacillin 254, valacyclovir 255, cefadroxil 254, muramyl dipeptide 268 | cyclacillin 254, cefadroxil 254 | – | valacyclovir 247 |
Inhibitors (pIC50) | 4-AMBA 252, Lys[Z(NO2)]-Pro 258 | Lys[Z(NO2)]-Lys[Z(NO2)] 248,267, Lys[Z(NO2)]-Pro | – | – |
Radioligands (Kd) | [11C]GlySar, [14C]GlySar, [3H]GlySar | [11C]GlySar, [14C]GlySar, [3H]GlySar | [14C]histidine, [3H]histidine | [14C]histidine, [3H]histidine |
Stoichiometry | 1 H+: 1 zwitterionic peptide (in) | 2 H+: 1 zwitterionic peptide (in) | Unknown | Unknown |
Comments
The PepT1 and PepT2 transporters are particularly promiscuous in the transport of dipeptides and tripeptides from the endogenous amino acids, as well as some D-amino acid containing peptides. PepT1 has also been exploited to allow delivery of therapeutic pro-drugs, such as those for zidovudine 256, sulpiride 269 and cytarabine 266.
D-Ala-Lys-AMCA has been used as a fluorescent probe to identify transport via both PepT1 and PepT2 263.
SLC16 family of monocarboxylate transporters
Overview
Members of the SLC16 family may be divided into subfamilies on the basis of substrate selectivities, particularly lactate (e.g. L-lactic acid), pyruvic acid and ketone bodies, as well as aromatic amino acids. Topology modelling suggests 12 TM domains, with intracellular termini and an extended loop at TM 6/7.
The proton-coupled monocarboxylate transporters (monocarboxylate transporters 1, 4, 2 and 3) allow transport of the products of cellular metabolism, principally lactate (e.g. L-lactic acid) and pyruvic acid.
Nomenclature | Monocarboxylate transporter 1 | Monocarboxylate transporter 4 | Monocarboxylate transporter 2 | Monocarboxylate transporter 3 |
Systematic nomenclature | SLC16A1 | SLC16A3 | SLC16A7 | SLC16A8 |
Common abbreviation | MCT1 | MCT4 | MCT2 | MCT3 |
HGNC, UniProt | SLC16A1, P53985 | SLC16A3, O15427 | SLC16A7, O60669 | SLC16A8, O95907 |
Endogenous substrates | β-D-hydroxybutyric acid, L-lactic acid, pyruvic acid | L-lactic acid, pyruvic acid | L-lactic acid, pyruvic acid | L-lactic acid |
Substrates | γ-hydroxybutyric acid 272 | – | – | – |
Stoichiometry | 1 H+: 1 monocarboxylate- (out) | 1 H+: 1 monocarboxylate- (out) | 1 H+: 1 monocarboxylate- (out) | 1 H+: 1 monocarboxylate- (out) |
Nomenclature | Monocarboxylate transporter 8 | Monocarboxylate transporter 10 |
Systematic nomenclature | SLC16A2 | SLC16A10 |
Common abbreviation | MCT8 | TAT1 |
HGNC, UniProt | SLC16A2, P36021 | SLC16A10, Q8TF71 |
Endogenous substrates | T3 270, T4 270 | L-tryptophan, L-phenylalanine, L-DOPA, L-tyrosine |
Stoichiometry | Unknown | Unknown |
Nomenclature | Monocarboxylate transporter 5 | Monocarboxylate transporter 6 | Monocarboxylate transporter 7 | Monocarboxylate transporter 9 | Monocarboxylate transporter 11 | Monocarboxylate transporter 12 | Monocarboxylate transporter 13 | Monocarboxylate transporter 14 |
Systematic nomenclature | SLC16A4 | SLC16A5 | SLC16A6 | SLC16A9 | SLC16A11 | SLC16A12 | SLC16A13 | SLC16A14 |
Common abbreviation | MCT5 | MCT6 | MCT7 | MCT9 | MCT11 | MCT12 | MCT13 | MCT14 |
HGNC, UniProt | SLC16A4, O15374 | SLC16A5, O15375 | SLC16A6, O15403 | SLC16A9, Q7RTY1 | SLC16A11, Q8NCK7 | SLC16A12, Q6ZSM3 | SLC16A13, Q7RTY0 | SLC16A14, Q7RTX9 |
Stoichiometry | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown |
Comment | – | MCT6 has been reported to transport bumetanide, but not short chain fatty acids 271 | – | – | – | – | – | – |
Comments
MCT1 and MCT2, but not MCT3 and MCT4, are inhibited by CHC, which also inhibits members of the mitochondrial transporter family, SLC25.
MCT5-MCT7, MCT9 and MCT11-14 are regarded as orphan transporters.
SLC17 phosphate and organic anion transporter family
Overview
The SLC17 family are sometimes referred to as Type I sodium-phosphate co-transporters, alongside Type II (SLC34 family) and Type III (SLC20 family) transporters. Within the SLC17 family, however, further subgroups of organic anion transporters may be defined, allowing the accumulation of sialic acid in the endoplasmic reticulum and glutamate (e.g. L-glutamic acid) or nucleotides in synaptic and secretory vesicles. Topology modelling suggests 12 TM domains.
Type I sodium-phosphate co-transporters
Overview
Type I sodium-phosphate co-transporters are expressed in the kidney and intestine.
Nomenclature | Sodium/phosphate cotransporter 1 | Sodium/phosphate cotransporter 3 | Sodium/phosphate cotransporter 4 | Sodium/phosphate cotransporter homolog |
Systematic nomenclature | SLC17A1 | SLC17A2 | SLC17A3 | SLC17A4 |
Common abbreviation | NPT1 | NPT3 | NPT4 | – |
HGNC, UniProt | SLC17A1, Q14916 | SLC17A2, O00624 | SLC17A3, O00476 | SLC17A4, Q9Y2C5 |
Substrates | Cl- 275, probenecid 274, PO34- 275, uric acid 275, penicillin G 274, organic acids 275 | – | – | – |
Stoichiometry | Unknown | Unknown | Unknown | Unknown |
Sialic acid transporter
Overview
The sialic acid transporter is expressed on both lysosomes and synaptic vesicles, where it appears to allow export of sialic acid and accumulation of acidic amino acids, respectively 277, driven by proton gradients. In lysosomes, degradation of glycoproteins generates amino acids and sugar residues, which are metabolized further following export from the lysosome.
Comments
Loss-of-function mutations in sialin are associated with Salla disease (OMIM: 604369), an autosomal recessive neurodegenerative disorder associated with sialic acid storage disease 279.
Vesicular glutamate transporters (VGLUTs)
Overview
Vesicular glutamate transporters (VGLUTs) allow accumulation of glutamate into synaptic vesicles, as well as secretory vesicles in endocrine tissues. The roles of VGLUTs in kidney and liver are unclear. These transporters appear to utilize the proton gradient and also express a chloride conductance 273.
Nomenclature | Vesicular glutamate transporter 1 | Vesicular glutamate transporter 2 | Vesicular glutamate transporter 3 |
Systematic nomenclature | SLC17A7 | SLC17A6 | SLC17A8 |
Common abbreviation | VGLUT1 | VGLUT2 | VGLUT3 |
HGNC, UniProt | SLC17A7, Q9P2U7 | SLC17A6, Q9P2U8 | SLC17A8, Q8NDX2 |
Endogenous substrates | L-glutamic acid > D-glutamic acid | L-glutamic acid > D-glutamic acid | L-glutamic acid > D-glutamic acid |
Stoichiometry | Unknown | Unknown | Unknown |
Comments
Endogenous ketoacids produced during fasting have been proposed to regulate VGLUT function through blocking chloride ion-mediated allosteric enhancement of transporter function 276.
Vesicular nucleotide transporter
Overview
The vesicular nucleotide transporter is the most recent member of the SLC17 family to have an assigned function. Uptake of ATP was independent of pH, but dependent on chloride ions and membrane potential 278.
Comments
VGLUTs and VNUT can be inhibited by DIDS and evans blue dye.
SLC18 family of vesicular amine transporters
Overview
The vesicular amine transporters (VATs) are putative 12 TM domain proteins that function to transport singly positively charged amine neurotransmitters and hormones from the cytoplasm and concentrate them within secretory vesicles. They function as amine/proton antiporters driven by secondary active transport utilizing the proton gradient established by a multi-subunit vacuolar ATPase that acidifies secretory vesicles (reviewed by 283). The vesicular acetylcholine transporter (VAChT; 287) localizes to cholinergic neurons, but non-neuronal expression has also been claimed 290. Vesicular monoamine transporter 1 (VMAT1, 285) is mainly expressed in peripheral neuroendocrine cells, but most likely not in the CNS, whereas VMAT2 286 distributes between both central and peripheral sympathetic monoaminergic neurones 284.
Nomenclature | Vesicular monoamine transporter 1 | Vesicular monoamine transporter 2 | Vesicular acetylcholine transporter | solute carrier family 18, subfamily B, member 1 |
Systematic nomenclature | SLC18A1 | SLC18A2 | SLC18A3 | SLC18B1 |
Common abbreviation | VMAT1 | VMAT2 | VAChT | – |
HGNC, UniProt | SLC18A1, P54219 | SLC18A2, Q05940 | SLC18A3, Q16572 | SLC18B1, Q6NT16 |
Endogenous substrates | 5-HT (Ki 1.4x10-6 M) 286, (-)-adrenaline (Ki 5.5x10-6 M) 286, (-)-noradrenaline (Ki 1.37x10-5 M) 286, dopamine (Ki 3.8x10-6 M) 286, histamine (Ki 4.696x10-3 M) 286 | 5-HT (Ki 9x10-7 M) 286, (-)-adrenaline (Ki 1.9x10-6 M) 286, (-)-noradrenaline (Ki 3.4x10-6 M) 286, dopamine (Ki 1.4x10-6 M) 286, histamine (Ki 1.43x10-4 M) 286 | acetylcholine (Ki 7.94x10-4 M) 280,288, choline (Ki 5x10-4 M) 280,288 | – |
Substrates | β-phenylethylamine (Ki 3.4x10-5 M) 286, dextroamphetamine (Ki 4.7x10-5 M) 286, MPP+ (Ki 6.9x10-5 M) 286, MDMA (Ki 1.9x10-5 M) 286, fenfluramine (Ki 3.1x10-6 M) 286 | β-phenylethylamine (Ki 3.7x10-6 M) 286, dextroamphetamine (Ki 2.1x10-6 M) 286, MPP+ (Ki 8.9x10-6 M) 286, MDMA (Ki 6.9x10-6 M) 286, fenfluramine (Ki 5.1x10-6 M) 286 | TPP+ 281, ethidium 281, N-methyl-pyridinium-2-aldoxime 281, N-(4′-pentanonyl)-4-(4″-dimethylamino-styryl)pyridinium 281 | – |
Inhibitors (pIC50) | reserpine (pKi 7.45) 286, ketanserin (pKi 5.8) 286, tetrabenazine (pKi 4.7) 286 | reserpine (pKi 7.9) 286, tetrabenazine (pKi 7.0) 286, ketanserin (pKi 6.3) 286 | aminobenzovesamicol (pKi 10.9) 282, vesamicol (pKi 8.7) 282 | – |
Radioligands (Kd) | – | [11C]DTBZ, [125I]8-azido-3-iodoketanserine, [3H]TBZOH (6.6x10-9 M) 291, [125I]iodovinyl-TBZ (8.2x10-9 M) 289 | [123I]iodobenzovesamicol, [3H]vesamicol (4.1x10-9 M) 291 | – |
Stoichiometry | 1 amine (in): 2H+ (out) | 1 amine (in): 2H+ (out) | 1 amine (in): 2H+ (out) | – |
Comments
pKi values for endogenous and synthetic substrate inhibitors of human VMAT1 and VMAT2 are for inhibition of [3H]5-HT uptake in transfected and permeabilised CV-1 cells as detailed by 286. In addition to the monoamines listed in the table, the trace amines tyramine and β-phenylethylamine are probable substrates for VMAT2 284. Probes listed in the table are those currently employed; additional agents have been synthesized (e.g. 292).
SLC19 family of vitamin transporters
Overview
The B vitamins folic acid and thiamine are transported across the cell membrane, particularly in the intestine, kidneys and placenta, using pH differences as driving forces. Topological modelling suggests the transporters have 12 TM domains.
Nomenclature | Reduced folate transporter 1 | Thiamine transporter 1 | Thiamine transporter 2 |
Systematic nomenclature | SLC19A1 | SLC19A2 | SLC19A3 |
Common abbreviation | FOLT | ThTr1 | ThTr2 |
HGNC, UniProt | SLC19A1, P41440 | SLC19A2, O60779 | SLC19A3, Q9BZV2 |
Endogenous substrates | thiamine monophosphate 298, tetrahydrofolic acid 296, N5-methylfolate 296, Organic phosphates; in particular, adenine nucleotides, Other tetrahydrofolate-cofactors | thiamine | thiamine |
Substrates | folic acid 296, methotrexate, folinic acid, N5-formyltetrahydrofolate | – | – |
Radioligands (Kd) | [3H]folic acid 293, [3H]methotrexate 293 | [3H]thiamine 295 | [3H]thiamine 297 |
Stoichiometry | Folate (in): organic phosphate (out), precise stoichiometry unknown | A facilitative carrier not known to be coupled to an inorganic or organic ion gradient | A facilitative carrier not known to be coupled to an inorganic or organic ion gradient |
Comments
Loss-of-function mutations in ThTr1 underlie thiamine-responsive megaloblastic anemia syndrome 294.
SLC20 family of sodium-dependent phosphate transporters
Overview
The SLC20 family is looked upon not only as ion transporters, but also as retroviral receptors. As ion transporters, they are sometimes referred to as Type III sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type II (SLC34 family). PiTs are cell-surface transporters, composed of ten TM domains with extracellular C- and N-termini. PiT1 is a focus for dietary PO34- and vitamin D regulation of parathyroid hormone secretion from the parathyroid gland. PiT2 appears to be involved in intestinal absorption of dietary PO34-.
Nomenclature | Sodium-dependent phosphate transporter 1 | Sodium-dependent phosphate transporter 2 |
Systematic nomenclature | SLC20A1 | SLC20A2 |
Common abbreviation | PiT1 | PiT2 |
HGNC, UniProt | SLC20A1, Q8WUM9 | SLC20A2, Q08357 |
Substrates | AsO43− 299, PO34- 299 | PO34- 299 |
Stoichiometry | >1 Na+: 1 HPO42- (in) | >1 Na+: 1 HPO42- (in) |
SLC22 family of organic cation and anion transporters
Overview
The SLC22 family of transporters is mostly composed of non-selective transporters, which are expressed highly in liver, kidney and intestine, playing a major role in drug disposition. The family may be divided into three subfamilies based on the nature of the substrate transported: organic cations (OCTs), organic anions (OATs) and organic zwiterrion/cations (OCTN). Membrane topology is predicted to contain 12 TM domains with intracellular termini, and an extended extracellular loop at TM 1/2.
Organic cation transporters (OCT)
Overview
Organic cation transporters (OCT) are electrogenic, Na+-independent and reversible.
Nomenclature | Organic cation transporter 1 | Organic cation transporter 2 | Organic cation transporter 3 |
Systematic nomenclature | SLC22A1 | SLC22A2 | SLC22A3 |
Common abbreviation | OCT1 | OCT2 | OCT3 |
HGNC, UniProt | SLC22A1, O15245 | SLC22A2, O15244 | SLC22A3, O75751 |
Endogenous substrates | 5-HT, PGE2, PGF2α, choline | dopamine 303, histamine 303, PGE2 304 | 5-HT 307, (-)-noradrenaline 307, dopamine 307 |
Substrates | tetraethylammonium, desipramine, MPP+, metformin, acyclovir | (+)-tubocurarine 302, tetraethylammonium 302, pancuronium 302, MPP+ 302 | quinidine, tetraethylammonium, MPP+ |
Stoichiometry | Unknown | Unknown | Unknown |
Comments
corticosterone and quinine are able to inhibit all three organic cation transporters.
Organic zwitterions/cation transporters (OCTN)
Overview
Organic zwitterions/cation transporters (OCTN) function as organic cation uniporters, organic cation/proton exchangers or sodium/L-carnitine co-transporters.
Nomenclature | Organic cation/carnitine transporter 1 | Organic cation/carnitine transporter 2 | Carnitine transporter 2 |
Systematic nomenclature | SLC22A4 | SLC22A5 | SLC22A16 |
Common abbreviation | OCTN1 | OCTN2 | CT2 |
HGNC, UniProt | SLC22A4, Q9H015 | SLC22A5, O76082 | SLC22A16, Q86VW1 |
Endogenous substrates | L-carnitine | acetyl-L-carnitine, L-carnitine | L-carnitine |
Substrates | pyrilamine, tetraethylammonium, verapamil, MPP+ | pyrilamine, tetraethylammonium, verapamil, MPP+ | – |
Stoichiometry | Unknown | Unknown | Unknown |
Organic anion transporters (OATs)
Overview
Organic anion transporters (OATs) are non-selective transporters prominent in the kidney and intestine.
Nomenclature | Organic anion transporter 1 | Organic anion transporter 2 | Organic anion transporter 3 | Organic anion transporter 7 | Organic anion transporter 5 | Organic anion transporter 4 |
Systematic nomenclature | SLC22A6 | SLC22A7 | SLC22A8 | SLC22A9 | SLC22A10 | SLC22A11 |
Common abbreviation | OAT1 | OAT2 | OAT3 | OAT4 | OAT5 | – |
HGNC, UniProt | SLC22A6, Q4U2R8 | SLC22A7, Q9Y694 | SLC22A8, Q8TCC7 | SLC22A9, Q8IVM8 | SLC22A10, Q63ZE4 | SLC22A11, Q9NSA0 |
Substrates | aminohippuric acid, non-steroidal anti-inflammatory drugs | PGE2, aminohippuric acid, non-steroidal anti-inflammatory drugs | cimetidine 305, ochratoxin A 305, estrone-3-sulphate 305, aminohippuric acid 305 | – | ochratoxin A 306 | dehydroepiandrosterone sulphate 300, ochratoxin A 300, estrone-3-sulphate 300 |
Stoichiometry | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown |
Urate transporter
Orphan or poorly characterized SLC22 family members
Nomenclature | Systematic nomenclature | Common abbreviation | HGNC, UniProt |
Organic cation transporter-like 3 | SLC22A13 | ORCTL3 | SLC22A13, Q9Y226 |
Organic cation transporter-like 4 | SLC22A14 | ORCTL4 | SLC22A14, Q9Y267 |
Fly-like putative transporter 1 | SLC22A15 | FLIPT1 | SLC22A15, Q8IZD6 |
Brain-type organic cation transporter | SLC22A17 | BOIT | SLC22A17, Q8WUG5 |
Organic cation transporter-like 2 | SLC22A18 | ORCTL2 | SLC22A18, Q96BI1 |
OAT6 | SLC22A20 | – | SLC22A20, A6NK97 |
– | SLC22A23 | – | SLC22A23, A1A5C7 |
– | SLC22A24 | – | SLC22A24, Q8N4F4 |
UST6 | SLC22A25 | – | SLC22A25, Q6T423 |
solute carrier family 22, member 31 | SLC22A31 | – | SLC22A31, A6NKX4 |
SLC23 family of ascorbic acid transporters
Overview
Predicted to be 12 TM segment proteins, members of this family transport the reduced form of ascorbic acid (while the oxidized form may be handled by members of the SLC2 family (GLUT1/SLC2A1, GLUT3/SLC2A3 and GLUT4/SLC2A4). phloretin is considered a non-selective inhibitor of these transporters, with an affinity in the micromolar range.
Nomenclature | Sodium-dependent vitamin C transporter 1 | Sodium-dependent vitamin C transporter 2 | Sodium-dependent vitamin C transporter 3 | Sodium-dependent nucleobase transporter |
Systematic nomenclature | SLC23A1 | SLC23A2 | SLC23A3 | SLC23A4 |
Common abbreviation | SVCT1 | SVCT2 | SVCT3 | SNBT1 |
HGNC, UniProt | SLC23A1, Q9UHI7 | SLC23A2, Q9UGH3 | SLC23A3, Q6PIS1 | SLC23A4P, – |
Endogenous substrates | L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid 308 | L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid 308 | – | uracil > thymine > guanine, hypoxanthine > xanthine, uridine 309 |
Substrates | – | – | – | – |
Inhibitors (pIC50) | phloretin 308 | – | – | 5-fluorouracil 309 |
Radioligands (Kd) | [14C]ascorbic acid | [14C]ascorbic acid | – | – |
Stoichiometry | 2 Na+: 1 ascorbic acid (in) 308 | 2 Na+: 1 ascorbic acid (in) 308 | – | 1 Na+: 1 uracil (in) 309 |
Comment | – | – | SLC23A3 does not transport ascorbic acid and remains an orphan transporter. | SLC23A4/SNBT1 is found in rodents and non-human primates, but the sequence is truncated in the human genome and named as a pseudogene, SLC23A4P |
SLC24 family of sodium/potassium/calcium exchangers
Overview
The sodium/potassium/calcium exchange family of transporters utilize the extracellular sodium gradient to drive calcium and potassium co-transport out of the cell. As is the case for NCX transporters (SLC8A family), NKCX transporters are thought to be bidirectional, with the possibility of calcium influx following depolarization of the plasma membrane. Topological modeling suggests the presence of 10 TM domains, with a large intracellular loop between the fifth and sixth TM regions.
Nomenclature | Sodium/potassium/calcium exchanger 1 | Sodium/potassium/calcium exchanger 2 | Sodium/potassium/calcium exchanger 3 | Sodium/potassium/calcium exchanger 4 | Sodium/potassium/calcium exchanger 5 | Sodium/potassium/calcium exchanger 6 |
Systematic nomenclature | SLC24A1 | SLC24A2 | SLC24A3 | SLC24A4 | SLC24A5 | SLC24A6 |
Common abbreviation | NKCX1 | NKCX2 | NKCX3 | NKCX4 | NKCX5 | NKCX6 |
HGNC, UniProt | SLC24A1, O60721 | SLC24A2, Q9UI40 | SLC24A3, Q9HC58 | SLC24A4, Q8NFF2 | SLC24A5, Q71RS6 | SLC8B1, Q6J4K2 |
Stoichiometry | 4Na+:(1Ca2+ + 1K+) | – | – | – | – | – |
Comments
NKCX6 exhibits sufficient structural diversity for its function as a NKCX to be questioned 310.
To date, there are no agents selective for this family of transporters.
SLC25 family of mitochondrial transporters
Overview
Mitochondrial transporters are nuclear-encoded proteins, which convey solutes across the inner mitochondrial membrane. Topological modelling suggests homodimeric transporters, each with six TM segments and termini in the cytosol.
Mitochondrial di- and tri-carboxylic acid transporter subfamily
Overview
Mitochondrial di- and tri-carboxylic acid transporters are grouped on the basis of commonality of substrates and include the citrate transporter which facilitates citric acid export from the mitochondria to allow the generation of oxalacetic acid and acetyl CoA through the action of ATP:citrate lyase.
Nomenclature | Mitochondrial citrate transporter | Mitochondrial dicarboxylate transporter | Mitochondrial oxoglutarate carrier | Mitochondrial oxodicarboxylate carrier | – | – |
Systematic nomenclature | SLC25A1 | SLC25A10 | SLC25A11 | SLC25A21 | SLC25A34 | SLC25A35 |
Common abbreviation | CIC | DIC | OGC | ODC | – | – |
HGNC, UniProt | SLC25A1, P53007 | SLC25A10, Q9UBX3 | SLC25A11, Q02978 | SLC25A21, Q9BQT8 | SLC25A34, Q6PIV7 | SLC25A35, Q3KQZ1 |
Substrates | citric acid, malic acid, PEP | malic acid, succinic acid, PO34-, S2O32-, SO42- | malic acid, α-ketoglutaric acid | α-ketoglutaric acid, α-oxoadipic acid | – | – |
Inhibitors (pIC50) | 1,2,3-benzenetricarboxylic acid | – | – | – | – | – |
Stoichiometry | Malate2- (in): H-citrate2- (out) | PO34- (in): malate2- (out) | Malate2- (in): oxoglutarate2- (out) | Oxoadipate (in): oxoglutarate (out) | – | – |
Mitochondrial amino acid transporter subfamily
Overview
Mitochondrial amino acid transporters can be subdivided on the basis of their substrates. Mitochondrial ornithine transporters play a role in the urea cycle by exchanging cytosolic ornithine (L-ornithine and D-ornithine) for mitochondrial citrulline (L-citrulline and D-citrulline) in equimolar amounts. Further members of the family include transporters of S-adenosylmethionine and carnitine.
Nomenclature | Mitochondrial glutamate carrier 1 | Mitochondrial glutamate carrier 2 | AGC1 | AGC2 |
Systematic nomenclature | SLC25A22 | SLC25A18 | SLC25A12 | SLC25A13 |
Common abbreviation | GC1 | GC2 | AGC1 | AGC2 |
HGNC, UniProt | SLC25A22, Q9H936 | SLC25A18, Q9H1K4 | SLC25A12, O75746 | SLC25A13, Q9UJS0 |
Substrates | L-glutamic acid | L-glutamic acid | L-glutamic acid, L-aspartic acid, 2-amino-3-sulfinopropanoic acid | L-glutamic acid, L-aspartic acid, 2-amino-3-sulfinopropanoic acid |
Stoichiometry | Glutamate: H+ (bidirectional) | Glutamate: H+ (bidirectional) | Aspartate: glutamate H+ (bidirectional) | Aspartate: glutamate H+ (bidirectional) |
Nomenclature | Mitochondrial ornithine transporter 1 | Mitochondrial ornithine transporter 2 | Carnitine/acylcarnitine carrier |
Systematic nomenclature | SLC25A15 | SLC25A2 | SLC25A20 |
Common abbreviation | ORC1 | ORC2 | CAC |
HGNC, UniProt | SLC25A15, Q9Y619 | SLC25A2, Q9BXI2 | SLC25A20, O43772 |
Substrates | L-arginine 311, L-citrulline 311, L-lysine 311, L-ornithine 311 | L-arginine 311, L-citrulline 311, L-lysine 311, L-ornithine 311, L-histidine 311, D-histidine 311, D-arginine 311, D-lysine 311, D-ornithine 311, D-citrulline 311 | – |
Stoichiometry | 1 Ornithine (in) :1 citrulline: 1 H+ (out) | 1 Ornithine (in) :1 citrulline: 1 H+ (out) | – |
Comment | – | – | Exchanges cytosolic acylcarnitine for mitochondrial carnitine |
Nomenclature | solute carrier family 25, member 47 | solute carrier family 25, member 48 | ORNT3 | – | CGI-69 | MCFP | – | – |
Systematic nomenclature | SLC25A47 | SLC25A48 | SLC25A29 | SLC25A38 | SLC25A39 | SLC25A40 | SLC25A44 | SLC25A45 |
Common abbreviation | – | – | ORNT3 | – | – | – | – | – |
HGNC, UniProt | SLC25A47, Q6Q0C1 | SLC25A48, Q6ZT89 | SLC25A29, Q8N8R3 | SLC25A38, Q96DW6 | SLC25A39, Q9BZJ4 | SLC25A40, Q8TBP6 | SLC25A44, Q96H78 | SLC25A45, Q8N413 |
Comments
Both ornithine transporters are inhibited by the polyamine spermine 312. Loss-of-function mutations in these genes are associated with hyperornithinemia-hyperammonemia-homocitrullinuria.
Mitochondrial phosphate transporters
Overview
Mitochondrial phosphate transporters allow the import of inorganic PO34- for ATP production.
Nomenclature | Mitochondrial phosphate carrier |
Systematic nomenclature | SLC25A3 |
Common abbreviation | PHC |
HGNC, UniProt | SLC25A3, Q00325 |
Stoichiometry | PO34- (in): OH- (out) or PO34-: H+ (in) |
Mitochondrial nucleotide transporter subfamily
Overview
Mitochondrial nucleotide transporters, defined by structural similarlities, include the adenine nucleotide translocator family (SLC25A4, SLC25A5, SLC25A6 and SLC25A31), which under conditions of aerobic metabolism, allow coupling between mitochondrial oxidative phosphorylation and cytosolic energy consumption by exchanging cytosolic ADP for mitochondrial ATP. Further members of the mitochondrial nucleotide transporter subfamily convey diverse substrates including CoA, although not all members have had substrates identified.
Nomenclature | Mitochondrial adenine nucleotide translocator 1 | Mitochondrial adenine nucleotide translocator 2 | Mitochondrial adenine nucleotide translocator 3 | Mitochondrial adenine nucleotide translocator 4 | – |
Systematic nomenclature | SLC25A4 | SLC25A5 | SLC25A6 | SLC25A31 | SLC25A42 |
Common abbreviation | ANT1 | ANT2 | ANT3 | ANT4 | – |
HGNC, UniProt | SLC25A4, P12235 | SLC25A5, P05141 | SLC25A6, P12236 | SLC25A31, Q9H0C2 | SLC25A42, Q86VD7 |
Inhibitors (pIC50) | BKA, CATR | – | – | – | – |
Stoichiometry | ADP3- (in): ATP4- (out) | ADP3- (in): ATP4- (out) | ADP3- (in): ATP4- (out) | ADP3- (in): ATP4- (out) | – |
Substrates | – | – | – | – | ADP |
Nomenclature | Graves disease carrier | Peroxisomal membrane protein | Deoxynucleotide carrier 1 | S-Adenosylmethionine carrier |
Systematic nomenclature | SLC25A16 | SLC25A17 | SLC25A19 | SLC25A26 |
Common abbreviation | GDC | PMP34 | DNC | SAMC1 |
HGNC, UniProt | SLC25A16, P16260 | SLC25A17, O43808 | SLC25A19, Q9HC21 | SLC25A26, Q70HW3 |
Substrates | CoA and congeners | ADP, ATP, AMP | Deoxynucleotide Diphosphates (dNDPs), Deoxynucleotide Triphosphates (dNTPs), Dideoxynucleotide Triphosphates (ddNTPs), Nucleotide Diphosphates (NDPs) | S-adenosyl methionine |
Stoichiometry | CoA (in) | ATP (in) | dNDP (in): ATP (out) | – |
Nomenclature | Mitochondrial phosphate carrier 1 | Mitochondrial phosphate carrier 2 | Mitochondrial phosphate carrier 3 | MFT | PNC1 | – | SCaMC-3L | – |
Systematic nomenclature | SLC25A24 | SLC25A23 | SLC25A25 | SLC25A32 | SLC25A33 | SLC25A36 | SLC25A41 | SLC25A43 |
Common abbreviation | APC1 | APC2 | APC3 | MFTC | – | PNC2 | – | – |
HGNC, UniProt | SLC25A24, Q6NUK1 | SLC25A23, Q9BV35 | SLC25A25, Q6KCM7 | SLC25A32, Q9H2D1 | SLC25A33, Q9BSK2 | SLC25A36, Q96CQ1 | SLC25A41, Q8N5S1 | SLC25A43, Q8WUT9 |
Mitochondrial uncoupling proteins
Overview
Mitochondrial uncoupling proteins allow dissipation of the mitochondrial proton gradient associated with thermogenesis and regulation of radical formation.
Miscellaneous SLC25 mitochondrial transporters
Overview
Many of the transporters identified below have yet to be assigned functions and are currently regarded as orphans.
SLC26 family of anion exchangers
Overview
Along with the SLC4 family, the SLC26 family acts to allow movement of monovalent and divalent anions across cell membranes. The predicted topology is of 10–14 TM domains with intracellular C- and N-termini, probably existing as dimers. Within the family, subgroups may be identified on the basis of functional differences, which appear to function as anion exchangers and anion channels (SLC26A7 and SLC26A9).
Selective sulphate transporters
Chloride/bicarbonate exchangers
Nomenclature | DRA | Pendrin | PAT-1 |
Systematic nomenclature | SLC26A3 | SLC26A4 | SLC26A6 |
HGNC, UniProt | SLC26A3, P40879 | SLC26A4, O43511 | SLC26A6, Q9BXS9 |
Substrates | Cl- | Cl-, HCO3-, formate, I-, OH- | Cl-, HCO3-, SO42-, oxalate, formate, I-, OH- |
Stoichiometry | 2 Cl- (in): 1 HCO3- (out) or 2 Cl- (in): 1 OH- (out) | Unknown | 1 SO42- (in): 2 HCO3- (out) or 1 Cl- (in): 2 HCO3- (out) |
Anion channels
Systematic nomenclature | SLC26A7 | SLC26A9 |
HGNC, UniProt | SLC26A7, Q8TE54 | SLC26A9, Q7LBE3 |
Substrates | NO3- >> Cl- = Br- = I- > SO42- = L-glutamic acid | I- > Br- > NO3- > Cl- > L-glutamic acid |
Functional characteristics | Voltage- and time-independent current, linear I-V relationship 315 | Voltage- and time-independent current, linear I-V relationship 314 |
Comment | – | SLC26A9 has been suggested to operate in two additional modes as a Cl--HCO3- exchanger and as a Na+-anion cotransporter 313 |
Other SLC26 anion exchangers
Nomenclature | Prestin | Tat1 | – | KBAT |
Systematic nomenclature | SLC26A5 | SLC26A8 | SLC26A10 | SLC26A11 |
Common abbreviation | – | – | – | KBAT |
HGNC, UniProt | SLC26A5, P58743 | SLC26A8, Q96RN1 | SLC26A10, Q8NG04 | SLC26A11, Q86WA9 |
Substrates | Cl-, HCO3- | Cl-, SO42-, oxalate | – | HSO4- |
Stoichiometry | Unknown | Unknown | Unknown | Unknown |
Comment | Prestin has been suggested to function as a molecular motor, rather than a transporter | – | SLC26A10 is a possible pseudogene | – |
SLC27 family of fatty acid transporters
Overview
Fatty acid transporter proteins (FATPs) are a family (SLC27) of six transporters (FATP1-6). They have at least one, and possibly six 319,325, transmembrane segments, and are predicted on the basis of structural similarities to form dimers. SLC27 members have several structural domains: integral membrane associated domain, peripheral membrane associated domain, FATP signature, intracellular AMP binding motif, dimerization domain, lipocalin motif, and an ER localization domain (identified in FATP4 only) 317,322,323. These transporters are unusual in that they appear to express intrinsic very long-chain acyl-CoA synthetase (EC 6.2.1.-, EC 6.2.1.7) enzyme activity. Within the cell, these transporters may associate with plasma and peroxisomal membranes. FATP1-4 and -6 transport long- and very long-chain fatty acids, while FATP5 transports long-chain fatty acids as well as bile acids 321,325.
Nomenclature | Fatty acid transport protein 1 | Fatty acid transport protein 2 | Fatty acid transport protein 3 | Fatty acid transport protein 4 | Fatty acid transport protein 5 | Fatty acid transport protein 6 |
Systematic nomenclature | SLC27A1 | SLC27A2 | SLC27A3 | SLC27A4 | SLC27A5 | SLC27A6 |
Common abbreviation | FATP1 | FATP2 | FATP3 | FATP4 | FATP5 | FATP6 |
HGNC, UniProt | SLC27A1, Q6PCB7 | SLC27A2, O14975 | SLC27A3, Q5K4L6 | SLC27A4, Q6P1M0 | SLC27A5, Q9Y2P5 | SLC27A6, Q9Y2P4 |
Endogenous substrates | arachidonic acid > palmitic acid > oleic acid > butyric acid 325, palmitic acid > oleic acid > γ-linolenic acid > octanoic acid 318 | – | – | palmitic acid > oleic acid > butyric acid, γ-linolenic acid > arachidonic acid 326, palmitic acid, oleic acid > γ-linolenic acid > octanoic acid 318 | – | palmitic acid > oleic acid > γ-linolenic acid > octanoic acid 318 |
Comment | – | – | – | FATP4 is genetically linked to restrictive dermopathy | – | – |
Comments
Although the stoichiometry of fatty acid transport is unclear, it has been proposed to be facilitated by the coupling of fatty acid transport to conjugation with coenzyme A to form fatty acyl CoA esters. Small molecule inhibitors of FATP2 320,324 and FATP4 316,327, as well as bile acid inhibitors of FATP5 327, have been described; analysis of the mechanism of action of some of these inhibitors suggests that transport may be selectively inhibited without altering enzymatic activity of the FATP.
C1-BODIPY-C12 accumulation has been used as a non-selective index of fatty acid transporter activity.
FATP2 has two variants: Variant 1 encodes the full-length protein, while Variant 2 encodes a shorter isoform missing an internal protein segment. FATP6 also has two variants: Variant 2 encodes the same protein as Variant 1 but has an additional segment in the 5' UTR.
SLC28 and SLC29 families of nucleoside transporters
Overview
Nucleoside transporters are divided into two families, the sodium-dependent, solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29), where the endogenous substrates are nucleosides.
SLC28 family
Overview
SLC28 family members have 13 TM segments with cytoplasmic N-termini and extracellular C-termini.
Nomenclature | CNT1 | CNT2 | CNT3 |
Systematic nomenclature | SLC28A1 | SLC28A2 | SLC28A3 |
Common abbreviation | CNT1 | CNT2 | CNT3 |
HGNC, UniProt | SLC28A1, O00337 | SLC28A2, O43868 | SLC28A3, Q9HAS3 |
Endogenous substrates | adenosine, uridine, thymidine, cytidine | adenosine, inosine, guanosine, thymidine | adenosine, inosine, uridine, guanosine, thymidine, cytidine |
Substrates | gemcitabine, zidovudine, zalcitabine | formycin B, cladribine, fludarabine, vidarabine, didanosine | 5-fluorouridine, zebularine, formycin B, gemcitabine, cladribine, floxuridine, zidovudine, zalcitabine, didanosine |
Stoichiometry | 1 Na+: 1 nucleoside (in) | 1 Na+: 1 nucleoside (in) | 2 Na+: 1 nucleoside (in) |
Comments
A further two Na+-dependent (stoichiometry 1 Na+: 1 nucleoside (in)) nucleoside transporters have been defined on the basis of substrate and inhibitor selectivity: CNT4 (N4/cit, which transports uridine, thymidine and guanosine) and CNT5 (N5/csg, which transports guanosine and adenosine, and may be inhibited by NBTI).
SLC29 family
Overview
SLC29 family members appear to be composed of 11 TM segments with cytoplasmic N-termini and extracellular C-termini. ENT1 and ENT2 are cell-surface transporters, while ENT3 is intracellular, possibly lysosomal 328. ENT1-3 are described as broad-spectrum nucleoside transporters.
Nomenclature | Equilibrative nucleoside transporter 1 | Equilibrative nucleoside transporter 2 | Equilibrative nucleoside transporter 3 | Plasma membrane monoamine transporter |
Systematic nomenclature | SLC29A1 | SLC29A2 | SLC29A3 | SLC29A4 |
Common abbreviation | ENT1 | ENT2 | ENT3 | PMAT |
HGNC, UniProt | SLC29A1, Q99808 | SLC29A2, Q14542 | SLC29A3, Q9BZD2 | SLC29A4, Q7RTT9 |
Endogenous substrates | adenosine 335, inosine 335, hypoxanthine 335, uridine 335, guanosine 335, thymine 335, thymidine 335, cytidine 335, adenine 335 | adenosine, inosine, hypoxanthine, uridine, guanosine, thymidine | adenosine 328, inosine 328, uridine 328, guanosine 328, thymidine 328, adenine 328 | 5-HT 329, dopamine 329, histamine 329, tyramine 329 |
Substrates | 2-chloroadenosine, formycin B, tubercidin, gemcitabine, cladribine, floxuridine, pentostatin, vidarabine, cytarabine, zalcitabine, didanosine | 2-chloroadenosine, formycin B, tubercidin, gemcitabine, cladribine, vidarabine, zidovudine, cytarabine | cordycepin 328, zebularine 328, tubercidin 328, cladribine 328, floxuridine 328, fludarabine 328, zidovudine 328, zalcitabine 328, didanosine 328 | tetraethylammonium 329, MPP+ 329 |
Inhibitors (pIC50) | NBTI (pKi 9.7), draflazine (pKi 9.5), KF24345 (pKi 9.4) 330, NBTGR (pKi 9.3), dilazep (pKi 9.0), dipyridamole (pKi 8.5) | – | – | cimetidine 329, quinidine 329, quinine 329, rhodamine123 329, verapamil 329 |
Radioligands (Kd) | [3H]NBTI (5x10-10 M) | – | – | – |
Stoichiometry | Equilibrative | Equilibrative | Equilibrative | Equilibrative |
Comment | ENT1 has 100-1000-fold lower affinity for nucleobases as compared with nucleosides 335., The affinities of draflazine, dilazep, KF24345 and dipyridamole at ENT1 transporters are species dependent, exhibiting lower affinity at rat transporters than at human transporters 330,333., The loss of ENT1 activity in ENT1-null mice has been associated with a hypermineralization disorder similar to human diffuse idiopathic skeletal hyperostosis 334 | – | Defects in SLC29A3 have been implicated in Histiocytosis-lymphadenopathy plus syndrome (OMIM:602782) and lysosomal storage diseases 331,332 | – |
SLC30 zinc transporter family
Overview
Along with the SLC39 family, SLC30 transporters regulate the movement of zinc ions around the cell. In particular, these transporters remove zinc ions from the cytosol, allowing accumulation into intracellular compartments or efflux through the plasma membrane. ZnT1 is thought to be placed on the plasma membrane extruding zinc, while ZnT3 is associated with synaptic vesicles and ZnT4 and ZnT5 are linked with secretory granules. Membrane topology predictions suggest a multimeric assembly, potentially heteromultimeric 337, with subunits having six TM domains, and both termini being cytoplasmic. Dityrosine covalent linking has been suggested as a mechanism for dimerisation, particularly for ZnT3 336. The mechanism for zinc transport is unknown.
Nomenclature | Systematic nomenclature | Common abbreviation | HGNC, UniProt |
Zinc transporter 1 | SLC30A1 | ZnT1 | SLC30A1, Q9Y6M5 |
Zinc transporter 2 | SLC30A2 | ZnT2 | SLC30A2, Q9BRI3 |
Zinc transporter 3 | SLC30A3 | ZnT3 | SLC30A3, Q99726 |
Zinc transporter 4 | SLC30A4 | ZnT4 | SLC30A4, O14863 |
Zinc transporter 5 | SLC30A5 | ZnT5 | SLC30A5, Q8TAD4 |
Zinc transporter 6 | SLC30A6 | ZnT6 | SLC30A6, Q6NXT4 |
Zinc transporter 7 | SLC30A7 | ZnT7 | SLC30A7, Q8NEW0 |
Zinc transporter 8 | SLC30A8 | ZnT8 | SLC30A8, Q8IWU4 |
Zinc transporter 9 | SLC30A9 | ZnT9 | SLC30A9, Q6PML9 |
Zinc transporter 10 | SLC30A10 | ZnT10 | SLC30A10, Q6XR72 |
Comments
ZnT8/SLC30A8 is described as a type 1 diabetes susceptibility gene.
Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3.
SLC31 family of copper transporters
Overview
SLC31 family members, alongside the Cu-ATPases are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell-surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter 341. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N-terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy-independent 340.
Comments
Copper accumulation through CTR1 is sensitive to silver ions, but not divalent cations 340.
SLC32 vesicular inhibitory amino acid transporter
Overview
The vesicular inhibitory amino acid transporter, VIAAT (also termed the vesicular GABA transporter VGAT), which is the sole representative of the SLC32 family, transports GABA, or glycine, into synaptic vesicles 343,344, and is a member of the structurally-defined amino acid-polyamine-organocation/APC clan composed of SLC32, SLC36 and SLC38 transporter families (see 349). VIAAT was originally suggested to be composed of 10 TM segments with cytoplasmic N- and C-termini 347. However, an alternative 9TM structure with the N terminus facing the cytoplasm and the C terminus residing in the synaptic vesicle lumen has subsequently been reported 346. VIAAT acts as an antiporter for inhibitory amino acids and protons. The accumulation of GABA and glycine within vesicles is driven by both the chemical (ΔpH) and electrical (Δψ) components of the proton electrochemical gradient (ΔμH+) established by a vacuolar H+-ATPase 347. However, one study, 345, presented evidence that VIAAT is instead a Cl-/GABA co-transporter. VIAAT co-exists with VGLUT1 (SLC17A7), or VGLUT2 (SLC17A6), in the synaptic vesicles of selected nerve terminals 342,351. VIAAT knock out mice die between embryonic day 18.5 and birth 350. In cultures of spinal cord neurones established from earlier embryos, the co-release of of GABA and glycine from synaptic vesicles is drastically reduced, providing direct evidence for the role of VIAAT in the sequestration of both transmitters 348,350.
Nomenclature | Vesicular inhibitory amino acid transporter |
Systematic nomenclature | SLC32A1 |
Common abbreviation | VIAAT |
HGNC, UniProt | SLC32A1, Q9H598 |
Endogenous substrates | glycine, β-alanine, γ-hydroxybutyric acid, GABA (Km 5x10-3 M) 347 |
Inhibitors (pIC50) | vigabatrin (2.1) 347 |
Stoichiometry | 1 amino acid (in): 1 H+ (out) 344 or 1 amino acid: 2Cl- (in) 345 |
SLC33 acetylCoA transporter
Overview
Acetylation of proteins is a post-translational modification mediated by specific acetyltransferases, using the donor acetyl CoA. SLC33A1/AT1 is a putative 11 TM transporter present on the endoplasmic reticulum, expressed in all tissues, but particularly abundant in the pancreas 353, which imports cytosolic acetyl CoA into these intracellular organelles.
Nomenclature | AcetylCoA transporter |
Systematic nomenclature | SLC33A1 |
Common abbreviation | ACATN1 |
HGNC, UniProt | SLC33A1, O00400 |
Endogenous substrates | acetyl CoA |
Radioligands (Kd) | [14C]acetylCoA |
Stoichiometry | Unknown |
Comments
In heterologous expression studies, acetyl CoA transport through AT1 was inhibited by coenzyme A, but not acetic acid, ATP or UDP-galactose 352. A loss-of-function mutation in ACATN1/SLC33A1 has been associated with spastic paraplegia (SPG42, 354), although this observation could not be replicated in a subsequent study 355.
SLC34 family of sodium phosphate co-transporters
Overview
The SLC34 family are sometimes referred to as Type II sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type III (SLC20 family) transporters. Topological modelling suggests eight TM domains with C- and N- termini in the cytoplasm, and a re-entrant loop at TM7/8. SLC34 family members are expressed on the apical surfaces of epithelia in the intestine and kidneys to regulate body phosphate levels, principally NaPi-IIa and NaPi-IIb, respectively. NaPi-IIa and NaPi-IIb are electrogenic, while NaPiIIc is electroneutral 356.
Nomenclature | Sodium phosphate 1 | Sodium phosphate 2 | Sodium phosphate 3 |
Systematic nomenclature | SLC34A1 | SLC34A2 | SLC34A3 |
Common abbreviation | NaPi-IIa | NaPi-IIb | NaPi-IIc |
HGNC, UniProt | SLC34A1, Q06495 | SLC34A2, O95436 | SLC34A3, Q8N130 |
Stoichiometry | 3 Na+: 1 HPO42- (in) 357 | 3 Na+: 1 HPO42- (in) 356 | 2 Na+: 1 HPO42- (in) 356 |
Comments
These transporters can be inhibited by PFA, in contrast to type III sodium-phosphate cotransporters, the SLC20 family.
SLC35 family of nucleotide sugar transporters
Overview
Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide-conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swopping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SL35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1-4 and SLC35F1-5.
Nomenclature | CMP-sialic acid transporter | UDP-galactose transporter | UDP-N-acetylglucosamine transporter | MGC2541 | FLJ11130 |
Systematic nomenclature | SLC35A1 | SLC35A2 | SLC35A3 | SLC35A4 | SLC35A5 |
HGNC, UniProt | SLC35A1, P78382 | SLC35A2, P78381 | SLC35A3, Q9Y2D2 | SLC35A4, Q96G79 | SLC35A5, Q9BS91 |
Substrates | CMP-sialic acid 359 | UDP N-acetyl-glucosamine 361,366, UDP-galactose 361,366 | UDP N-acetyl-glucosamine 362 | – | – |
Nomenclature | GDP-Fucose transporter | OVCOV1 | UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter | HFRC1 | FRCL1 |
Systematic nomenclature | SLC35C1 | SLC35C2 | SLC35D1 | SLC35D2 | SLC35D3 |
HGNC, UniProt | SLC35C1, Q96A29 | SLC35C2, Q9NQQ7 | SLC35D1, Q9NTN3 | SLC35D2, Q76EJ3 | SLC35D3, Q5M8T2 |
Substrates | GDP-fucose 365 | – | UDP-glucuronic acid 367, UDP-N-acetylgalactosamine 367 | UDP-N-acetylgalactosamine 360 | – |
Nomenclature | – | – | solute carrier family 35, member E2B | – | – |
Systematic nomenclature | SLC35E1 | SLC35E2 | SLC35E2B | SLC35E3 | SLC35E4 |
HGNC, UniProt | SLC35E1, Q96K37 | SLC35E2, P0CK97 | SLC35E2B, P0CK96 | SLC35E3, Q7Z769 | SLC35E4, Q6ICL7 |
Comment | Orphan transporter | Orphan transporter | – | Orphan transporter | Orphan transporter |
Nomenclature | – | – | – | – | – | solute carrier family 35, member F6 |
Systematic nomenclature | SLC35F1 | SLC35F2 | SLC35F3 | SLC35F4 | SLC35F5 | SLC35F6 |
HGNC, UniProt | SLC35F1, Q5T1Q4 | SLC35F2, Q8IXU6 | SLC35F3, Q8IY50 | SLC35F4, A4IF30 | SLC35F5, Q8WV83 | SLC35F6, Q8N357 |
Comment | Orphan transporter | Orphan transporter | Orphan transporter | Orphan transporter | Orphan transporter | – |
Nomenclature | solute carrier family 35, member G1 | solute carrier family 35, member G3 | solute carrier family 35, member G4 | solute carrier family 35, member G5 | solute carrier family 35, member G6 |
Systematic nomenclature | SLC35G1 | SLC35G3 | SLC35G4 | SLC35G5 | SLC35G6 |
HGNC, UniProt | SLC35G1, Q2M3R5 | SLC35G3, Q8N808 | SLC35G4, P0C7Q5 | SLC35G5, Q96KT7 | SLC35G6, P0C7Q6 |
SLC36 family of proton-coupled amino acid transporters
Overview
The SLC36 family of proton-coupled amino acid transporters (or PAT) is highly expressed in the intestine and kidney, having roles in the disposition of amino acids 383. PAT1 is found on the gut epithelia luminal surface accumulating dietary amino acids, and additionally in lysosomal membranes where it likely functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis 369,382. PAT2 is found at the apical membrane of the kidney proximal tubule 372. PAT1 and PAT2 are predicted to have 11 TM domains with intracellular N-termini 370,382.
Nomenclature | Proton-coupled Amino acid Transporter 1 | Proton-coupled Amino acid Transporter 2 | Proton-coupled Amino acid Transporter 3 | Proton-coupled Amino acid Transporter 4 |
Systematic nomenclature | SLC36A1 | SLC36A2 | SLC36A3 | SLC36A4 |
Common abbreviation | PAT1 | PAT2 | PAT3 | PAT4 |
HGNC, UniProt | SLC36A1, Q7Z2H8 | SLC36A2, Q495M3 | SLC36A3, Q495N2 | SLC36A4, Q6YBV0 |
Endogenous substrates | L-alanine, glycine, GABA, β-alanine, taurine, L-proline, D-serine, D-cysteine, D-proline, D-alanine, trans-4-hydroxy-proline, sarcosine | L-alanine, glycine, β-alanine, L-proline, trans-4-hydroxy-proline, sarcosine | – | L-tryptophan 381, L-proline 381 |
Substrates | THIP 378, betaine, L-azetidine-2-carboxylate 377, MeAIB 373, β-guanidinopropionic acid, THPO 379, 5-aminolevulinic acid, vigabatrin 368 | L-azetidine-2-carboxylate 377, MeAIB 374 | – | – |
Inhibitors (pIC50) | 5-hydroxy-L-tryptophan (pKi 3.0) 380, indole-3-propionic acid (pKi 2.3) 380, L-tryptophan (pKi 2.3) 380, 5-HT (pKi 2.2) 380 | 5-hydroxy-L-tryptophan (2.8) 375, α-methyl-D,L-tryptophan (2.5) 375 | – | – |
Stoichiometry | 1 H+: 1 amino acid (in) | 1 H+: 1 amino acid (in) | Unknown | Unknown |
Comment | [3H] or [14C] labelled substrates as listed above are used as probes | [3H] or [14C] labelled substrates as listed above are used as probes | – | – |
Comments
Both PAT1 and PAT2 can also function as an electroneutral transport system for H+ and fatty acids including acetic acid, propanoic acid and butyric acid 376.
Loss-of-function mutations in PAT2 lead to iminoglycinuria and hyperglycinuria in man 371.
SLC37 family of phosphosugar/phosphate exchangers
Overview
The family of sugar-phosphate exchangers pass particular phosphorylated sugars across intracellular membranes, exchanging for inorganic phosphate. Of the family of sugar phosphate transporters, most information is available on SPX4, the glucose-6-phosphate transporter. This is a 10 TM domain protein with cytoplasmic termini and is associated with the endoplasmic reticulum, with tissue-specific splice variation.
Nomenclature | Glycerol-3-phosphate transporter | SPX2 | SPX3 | Glucose-6-phosphate transporter |
Systematic nomenclature | SLC37A1 | SLC37A2 | SLC37A3 | SLC37A4 |
Common abbreviation | SPX1 | – | – | SPX4 |
HGNC, UniProt | SLC37A1, P57057 | SLC37A2, Q8TED4 | SLC37A3, Q8NCC5 | SLC37A4, O43826 |
Endogenous substrates | glucose 6-phosphate, glycerol 3-phosphate | glucose 6-phosphate | – | glucose 6-phosphate |
Stoichiometry | Glucose 6-phosphate (in): phosphate (out) 386 | Glucose 6-phosphate (in): phosphate (out) 386 | Unknown | Glucose 6-phosphate (in): phosphate (out) 385 |
Comment | – | – | – | Multiple polymorphisms have been described for the SLC37A4 gene, some of which associate with a glycogen storage disease 384 |
SLC38 family of sodium-dependent neutral amino acid transporters
Overview
The SLC38 family of transporters appears to be responsible for the functionally-defined system A and system N mechanisms of amino acid transport and are mostly expressed in the CNS. Two distinct subfamilies are identifiable within the SLC38 transporters. SNAT1, SNAT2 and SNAT4 appear to resemble system A transporters in accumulating neutral amino acids under the influence of the sodium gradient. SNAT3 and SNAT5 appear to resemble system N transporters in utilizing proton co-transport to accumulate amino acids. The predicted membrane topology is of 11 TM domains with an extracellular C-terminus and intracellular N-terminus 394.
System A-like transporters
Nomenclature | SNAT1 | SNAT2 | SNAT4 |
Systematic nomenclature | SLC38A1 | SLC38A2 | SLC38A4 |
Common abbreviation | SNAT1 | SNAT2 | SNAT4 |
HGNC, UniProt | SLC38A1, Q9H2H9 | SLC38A2, Q96QD8 | SLC38A4, Q969I6 |
Endogenous substrates | L-alanine > L-serine, L-glutamine, L-asparagine, L-histidine, L-cysteine, L-methionine > glycine, L-threonine, L-proline, L-tyrosine, L-valine 387 | L-alanine, L-methionine > L-asparagine, L-glutamine, L-serine, L-proline, glycine > L-threonine, L-leucine, L-phenylalanine 391 | L-histidine > L-arginine, L-alanine, L-asparagine, L-lysine > glycine, L-glutamine, L-serine, L-proline, L-leucine, L-phenylalanine 390 |
Substrates | MeAIB | MeAIB | MeAIB |
Radioligands (Kd) | [14C]alanine, [3H]alanine | [14C]alanine, [3H]alanine | [14C]alanine, [14C]glycine, [3H]alanine, [3H]glycine |
Stoichiometry | 1 Na+: 1 amino acid (in) 387 | 1 Na+: 1 amino acid (in) 391 | 1 Na+: 1 neutral amino acid (in) 390 |
Comment | – | – | Transport of cationic amino acids by SNAT4 was sodium-independent 390 |
System N-like transporters
Nomenclature | SNAT3 | SNAT5 |
Systematic nomenclature | SLC38A3 | SLC38A5 |
Common abbreviation | SNAT3 | SNAT5 |
HGNC, UniProt | SLC38A3, Q99624 | SLC38A5, Q8WUX1 |
Endogenous substrates | L-histidine, L-glutamine > L-asparagine, L-alanine > L-glutamic acid 389 | L-asparagine, L-serine, L-histidine, L-glutamine > glycine, L-alanine 393 |
Substrates | MeAIB | MeAIB |
Radioligands (Kd) | [14C]glutamine, [3H]glutamine | [14C]histidine, [3H]histidine |
Stoichiometry | 1 Na+: 1 amino acid (in): 1 H+ (out) 388 | 1 Na+: 1 amino acid (in): 1 H+ (out) 393 |
Orphan SLC38 transporters
Nomenclature | SNAT6 | SNAT7 | – | – | PP1744 | AVT2 |
Systematic nomenclature | SLC38A6 | SLC38A7 | SLC38A8 | SLC38A9 | SLC38A10 | SLC38A11 |
Common abbreviation | SNAT6 | SNAT7 | – | – | – | – |
HGNC, UniProt | SLC38A6, Q8IZM9 | SLC38A7, Q9NVC3 | SLC38A8, A6NNN8 | SLC38A9, Q8NBW4 | SLC38A10, Q9HBR0 | SLC38A11, Q08AI6 |
Comment | – | SNAT7/SLC38A7 has been described to be a system N-like transporter allowing preferential accumulation of L-glutamine, L-histidine and L-asparagine 392 | – | – | – | – |
SLC39 family of metal ion transporters
Overview
Along with the SLC30 family, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co-transport of bicarbonate ions 396,397.
Nomenclature | Zinc transporter 1 | Zinc transporter 2 | Zinc transporter 3 | Zinc transporter 4 | metal ion transporter 5 | Zinc transporter 6 | Zinc transporter 7 |
Systematic nomenclature | SLC39A1 | SLC39A2 | SLC39A3 | SLC39A4 | SLC39A5 | SLC39A6 | SLC39A7 |
Common abbreviation | ZIP1 | ZIP2 | ZIP3 | ZIP4 | ZIP5 | ZIP6 | ZIP7 |
HGNC, UniProt | SLC39A1, Q9NY26 | SLC39A2, Q9NP94 | SLC39A3, Q9BRY0 | SLC39A4, Q6P5W5 | SLC39A5, Q6ZMH5 | SLC39A6, Q13433 | SLC39A7, Q92504 |
Nomenclature | Zinc transporter 8 | Zinc transporter 9 | Zinc transporter 10 | Zinc transporter 11 | Zinc transporter 12 | Zinc transporter 13 | Zinc transporter 14 |
Systematic nomenclature | SLC39A8 | SLC39A9 | SLC39A10 | SLC39A11 | SLC39A12 | SLC39A13 | SLC39A14 |
Common abbreviation | ZIP8 | ZIP9 | ZIP10 | ZIP11 | ZIP12 | ZIP13 | ZIP14 |
HGNC, UniProt | SLC39A8, Q9C0K1 | SLC39A9, Q9NUM3 | SLC39A10, Q9ULF5 | SLC39A11, Q8N1S5 | SLC39A12, Q504Y0 | SLC39A13, Q96H72 | SLC39A14, Q15043 |
Substrates | Cd2+ 395,397 | – | – | – | – | – | Cd2+ 396, Fe2+ 398, Mn2+ 396 |
Stoichiometry | 1 Zn2+ (in): 2 HCO3- (in) 397 | – | – | – | – | – | – |
Comments
Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3.
The bicarbonate transport inhibitor DIDS has been reported to inhibit cation accumulation through ZIP14 396.
SLC40 iron transporter
Overview
Alongside the SLC11 family of proton-coupled metal transporters, ferroportin allows the accumulation of iron from the diet. Whilst SLC11A2 functions on the apical membrane, ferroportin acts on the basolateral side of the enterocyte, as well as regulating macrophage and placental iron levels. The predicted topology is of 12 TM domains, with intracellular termini 403, with the functional transporter potentially a dimeric arrangement 399,400.
Nomenclature | Ferroportin |
Systematic nomenclature | SLC40A1 |
Common abbreviation | IREG1 |
HGNC, UniProt | SLC40A1, Q9NP59 |
Endogenous substrates | Fe2+ |
Stoichiometry | Unknown |
Comments
Hepcidin (HAMP, P81172), cleaved into hepcidin-25 (HAMP, P81172) and hepcidin-20 (HAMP, P81173), is a small protein that increases upon inflammation, binds to ferroportin to regulate its cellular distribution and degradation. Gene disruption in mice results in embryonic lethality 402, while loss-of-function mutations in man are associated with haemochromatosis 401.
SLC41 family of divalent cation transporters
Overview
By analogy with bacterial orthologues, this family is probably magnesium transporters. The prokaryote orthologue, MgtE, is responsible for uptake of divalent cations, while the heterologous expression studies of mammalian proteins suggest Mg2+ efflux 406, possibly as a result of co-expression of particular protein partners (see 407). Topological modelling suggests 10 TM domains with cytoplasmic C- and N- termini.
Systematic nomenclature | SLC41A1 | SLC41A2 | SLC41A3 |
Common abbreviation | MgtE | – | – |
HGNC, UniProt | SLC41A1, Q8IVJ1 | SLC41A2, Q96JW4 | SLC41A3, Q96GZ6 |
Substrates | Zn2+ 404, Mg2+ 404, Ba2+ 404, Cd2+ 404, Co2+ 404, Cu2+ 404, Fe2+ 404, Sr2+ 404 | Mg2+ 405, Ba2+ 405, Ni2+ 405, Co2+ 405, Fe2+ 405, Mn2+ 405 | – |
Stoichiometry | Unknown | Unknown | Unknown |
SLC42 family of Rhesus glycoprotein ammonium transporters
Overview
LAT3 (SLC43A1) and LAT4 (SLC43A2) are transporters with system L amino acid transporter activity, along with the structurally and functionally distinct transporters LAT1 and LAT2 that are members of the SLC7 family. LAT3 and LAT4 contain 12 putative TM domains with both N and C termini located intracellularly. They transport neutral amino acids in a manner independent of Na+ and Cl- and with two kinetic components 412,413. LAT3/SLC43A1 is expressed in human tissues at high levels in the pancreas, liver, skeletal muscle and fetal liver 412 whereas LAT4/SLC43A2 is primarily expressed in the placenta, kidney and peripheral blood leukocytes 413. SLC43A3 is expressed in vascular endothelial cells 414 but remains to be characterised.
Nomenclature | L-type amino acid transporter 3 | L-type amino acid transporter 4 | EEG1 |
Systematic nomenclature | SLC43A1 | SLC43A2 | SLC43A3 |
Common abbreviation | LAT3 | LAT4 | – |
HGNC, UniProt | SLC43A1, O75387 | SLC43A2, Q8N370 | SLC43A3, Q8NBI5 |
Substrates | L-isoleucine, L-leucine, L-phenylalanine, L-valinol, L-leucinol, L-phenylalaninol, L-valine, L-methionine | L-isoleucine, L-leucine, L-phenylalanine, L-valinol, L-leucinol, L-valine, L-methionine | – |
Stoichiometry | Operates by facilitative diffusion | Operates by facilitative diffusion | – |
Comments
Covalent modification of LAT3 by N-ethylmaleimide inhibits its function 412 and at LAT4 inhibits the low-, but not high-affinity component of transport 413.
SLC44 choline transporter-like family
Overview
Members of the choline transporter-like family are encoded by five genes (CTL1-CTL5) with further diversity occurring through alternative splicing of CTL1, 4 and 5 423. CTL family members are putative 10TM domain proteins with extracellular termini that mediate Na+-independent transport of choline with an affinity that is intermediate to that of the high affinity choline transporter CHT1 (SLC5A7) and the low affinity organic-cation transporters [OCT1 (SLC22A1) and OCT2 (SLC22A2)] 420. CLT1 is expressed almost ubiquitously in human tissues 425 and mediates choline transport across the plasma and mitochondrial membranes 419. Transport of choline by CTL2, which in rodents is expressed as two isoforms (CTL2P1 and CLTP2; 417) in lung, colon, inner ear and spleen and to a lesser extent in brain, tongue, liver, and kidney, has only recently been demonstrated 417,422. CTL3-5 remain to be characterized functionally.
Nomenclature | Choline transporter-like 1 | Choline transporter-like 2 | Choline transporter-like 3 | Choline transporter-like 4 | Choline transporter-like 5 |
Systematic nomenclature | SLC44A1 | SLC44A2 | SLC44A3 | SLC44A4 | SLC44A5 |
Common abbreviation | CTL1 | CTL2 | CTL3 | CTL4 | CTL5 |
HGNC, UniProt | SLC44A1, Q8WWI5 | SLC44A2, Q8IWA5 | SLC44A3, Q8N4M1 | SLC44A4, Q53GD3 | SLC44A5, Q8NCS7 |
Substrates | choline | choline | – | – | – |
Inhibitors (pIC50) | hemicholinium-3 (pKi 3.5 – 4.5) | – | – | – | – |
Stoichiometry | Unknown: uptake enhanced in the absence of extracellular Na+, reduced by membrane depolarization, extracellular acidification and collapse of plasma membrane H+ electrochemical gradient | – | – | – | – |
Comments
Data tabulated are features observed for CLT1 endogenous to: rat astrocytes 416; rat renal tubule epithelial cells 426; human colon carcinoma cells 418; human keratinocytes 424 and human neuroblastoma cells 427. Choline uptake by CLT1 is inhibited by numerous organic cations (e.g. 416,426,427). In the guinea-pig, CTL2 is a target for antibody-induced hearing loss 421 and in man, a polymorphism in CTL2 constitutes the human neutrophil alloantigen-3a (HNA-3a; 415).
SLC45 family of putative sugar transporters
Overview
Members of the SLC45 family remain to be fully characterised. SLC45A1 was initially identified in the rat brain, particularly predominant in the hindbrain, as a proton-associated sugar transport, induced by hypercapnia 430. The protein is predicted to have 12TM domains, with intracellular termini. The SLC45A2 gene is thought to encode a transporter protein that mediates melanin synthesis. Mutations in SLC45A2 are a cause of oculocutaneous albinism type 4 (e.g. 429), and polymorphisms in this gene are associated with variations in skin and hair color (e.g. 428).
SLC46 family of folate transporters
Overview
Based on the proptypical member of this family, PCFT, this family includes proton-driven transporters with 11 TM segments. SLC46A1 has been described to act as an intestinal proton-coupled high-affinity folic acid transporter 432, with lower affinity for heme. folic acid accumulation is independent of Na+ or K+ ion concentrations, but driven by extracellular protons with an as yet undefined stoichiometry.
Nomenclature | Proton-coupled folate transporter | Thymic stromal co-transporter | – |
Systematic nomenclature | SLC46A1 | SLC46A2 | SLC46A3 |
Common abbreviation | PCFT | TSCOT | – |
HGNC, UniProt | SLC46A1, Q96NT5 | SLC46A2, Q9BY10 | SLC46A3, Q7Z3Q1 |
Substrates | folic acid (1.3μM) > heme (>100 μM) 431 | – | – |
Endogenous substrates | N5-methyltetrafolate 432 | – | – |
Substrates | methotrexate 432, N-formyltetrahydrofolate, pemetrexed | – | – |
Radioligands (Kd) | [3H]folic acid, [3H]folinic acid, [3H]methotrexate, [3H]N5-methylfolate, [3H]pemetrexed | – | – |
Comment | Loss-of-function mutations in PCFT (SLC46A1) are the molecular basis for hereditary folate maladsorption 433 | Function as-yet unknown | Function as-yet unknown |
SLC47 family of multidrug and toxin extrusion transporters
Overview
These proton:organic cation exchangers are predicted to have 13 TM segments 443 and are suggested to be responsible for excretion of many drugs in the liver and kidneys.
Nomenclature | Multi antimicrobial extrusion protein | MATE2 |
Systematic nomenclature | SLC47A1 | SLC47A2 |
Common abbreviation | MATE1 | MATE2-K |
HGNC, UniProt | SLC47A1, Q96FL8 | SLC47A2, Q86VL8 |
Endogenous substrates | creatine 439, thiamine 439 | creatine 439, thiamine 439 |
Substrates | cimetidine 437, quinidine 439, paraquat 434, cephradine 439, cephalexin 439 | cimetidine 436, MPP+ 436, N1-methylnicotinamide 436, metformin 436, guanidine 439, procainamide 436, acyclovir 439 |
(Sub)family-selective inhibitors (pIC50) | pyrimethamine (pKi 6.8), cimetidine (pKi 6.0) 441 | pyrimethamine (pKi 6.3 - Mouse) 435, cimetidine (pKi 5.1) 441 |
Radioligands (Kd) | [14C]metformin 439,440, [14C]TEA 438,440 | [14C]TEA 439 |
Comments
DAPI has been used to allow quantification of MATE1 and MATE2-mediated transport activity 442. MATE2 and MATE2-B are inactive splice variants of MATE2-K 436.
SLC48 heme transporter
Overview
HRG1 has been identified as a cell surface and lysosomal heme transporter 445. In addition, evidence suggests this 4TM-containing protein associates with the V-ATPase in lysosomes 444. Recent studies confirm its lysosomal location and demonstrate that it has an important physiological function in macrophages ingesting senescent red blood cells (erythrophagocytosis), recycling heme (released from the red cell hemoglobin) from the phagolysosome into the cytosol, where the heme is subsequently catabolized to recycle the iron 446.
Nomenclature | Heme transporter |
Systematic nomenclature | SLC48A1 |
Common abbreviation | HRG1 |
HGNC, UniProt | SLC48A1, Q6P1K1 |
SLC49 family of FLVCR-related heme transporters
Overview
FLVCR1 was initially identified as a cell-surface attachment site for feline leukemia virus subgroup C 455, and later identified as a cell surface accumulation which exports heme from the cytosol 452. A recent study indicates that an isoform of FLVCR1 is located in the mitochondria, the site of the final steps of heme synthesis, and appears to transport heme into the cytosol 448. FLVCR-mediated heme transport is essential for erythropoiesis. Flvcr1 gene mutations have been identified as the cause of PCARP (posterior column ataxia with retinitis pigmentosa (PCARP) 453.There are three paralogs of FLVCR1 in the human genome.
FLVCR2, most similar to FLVCR1 450, has been reported to function as a heme importer 449. In addition, a congenital syndrome of proliferative vasculopathy and hydranencephaly, also known as Fowler's syndrome, is associated with a loss-of-function mutation in FLVCR2 451.
The functions of the other two members of the SLC49 family, MFSD7 and DIRC2, are unknown, although DIRC2 has been implicated in hereditary renal carcinomas 447.
Nomenclature | Feline leukemia virus subgroup C cellular receptor family, member 1 | Feline leukemia virus subgroup C cellular receptor family, member 2 | Major facilitator superfamily domain containing 7 | Disrupted in renal carcinoma 2 |
Systematic nomenclature | SLC49A1 | SLC49A2 | SLC49A3 | SLC49A4 |
Common abbreviation | FLVCR1 | FLVCR2 | MFSD7 | DIRC2 |
HGNC, UniProt | FLVCR1, Q9Y5Y0 | FLVCR2, Q9UPI3 | MFSD7, Q6UXD7 | DIRC2, Q96SL1 |
Substrates | heme 452 | heme 449 | – | – |
Stoichiometry | Unknown | Unknown | Unknown | Unknown |
Comments
Non-functional splice alternatives of FLVCR1 have been implicated as a cause of a congenital red cell aplasia, Diamond Blackfan anemia 454.
SLC50 sugar transporter
Overview
A mouse stromal cell cDNA library was used to clone C2.3 457, later termed Rag1-activating protein 1, with a sequence homology predictive of a 4TM topology. The plant orthologues, termed SWEETs, appear to be 7 TM proteins, with extracellular N-termini, and the capacity for bidirectional flux of D-glucose 456. Expression of mouse SWEET in the mammary gland was suggestive of a role in Golgi lactose synthesis 456.
Nomenclature | SLC50 sugar exporter |
Systematic nomenclature | SLC50A1 |
Common abbreviation | RAG1AP1 |
HGNC, UniProt | SLC50A1, Q9BRV3 |
SLC51 family of steroid-derived molecule transporters
Overview
The SLC51 organic solute transporter family of transporters is a pair of heterodimeric proteins which regulate bile salt movements in the bile duct, small intestine and kidney, and elsewhere, as part of the enterohepatic circulation 458,460. OSTα/OSTβ is also expressed in steroidogenic cells of the brain and adrenal gland, where it may contribute to steroid movement 461. Bile acid transport is suggested to be facilitative and independent of sodium, potassium, chloride ions or protons 458,460. OSTα/OSTβ heterodimers have been shown to transport [3H]taurocholic acid, [3H]DHEAS, [3H]estrone-3-sulphate, [3H]-pregnenolone sulphate and [3H]DHEAS 458,460,461. OSTα is suggested to be a seven TM protein, while OSTβ is a single TM ‘ancillary’ protein, both of which are thought to have intracellular C-termini 462. Bimolecular fluorescence complementation studies suggest the possibility of OSTα homo-oligomers, as well as OSTα/OSTβ hetero-oligomers 459,462.
SLC52 family of riboflavin transporters
Overview
riboflavin, also known as vitamin B2, is a precursor of the enzyme cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Riboflavin transporters are predicted to possess 10 or 11 TM segments.
Nomenclature | solute carrier family 52 (riboflavin transporter), member 1 | solute carrier family 52 (riboflavin transporter), member 2 | solute carrier family 52 (riboflavin transporter), member 3 |
Systematic nomenclature | SLC52A1 | SLC52A2 | SLC52A3 |
Common abbreviation | RFVT1 | RFVT2 | RFVT3 |
HGNC, UniProt | SLC52A1, Q9NWF4 | SLC52A2, Q9HAB3 | SLC52A3, Q9NQ40 |
Endogenous substrates | riboflavin (Km 1.38x10-9 M) 463 | riboflavin (Km 9.8x10-10 M) 463 | riboflavin (Km 3.3x10-10 M) 463 |
Stoichiometry | Unknown | Unknown | H+-dependent |
Comments
Although expressed elsewhere, RFVT3 is found on the luminal surface of intestinal epithelium and is thought to mediate uptake of dietary riboflavin, while RFVT1 and RFVT2 are thought to allow movement from the epithelium into the blood.
SLCO family of organic anion transporting polypeptides
Overview
The SLCO superfamily is comprised of the organic anion transporting polypeptides (OATPs). The 11 human OATPs are divided into 6 families and ten subfamilies based on amino acid identity. These proteins are located on the plasma membrane of cells throughout the body. They have 12 TM domains and intracellular termini, with multiple putative glycosylation sites. OATPs mediate the sodium-independent uptake of a wide range of amphiphilic substrates, including many drugs and toxins. Due to the multispecificity of these proteins, this guide lists classes of substrates and inhibitors for each family member. More comprehensive lists of substrates, inhibitors, and their relative affinities may be found in the review articles listed below.
Nomenclature | OATP1A2 | OATP1B1 | OATP1B3 | OATP1C1 |
Systematic nomenclature | SLCO1A2 | SLCO1B1 | SLCO1B3 | SLCO1C1 |
HGNC, UniProt | SLCO1A2, P46721 | SLCO1B1, Q9Y6L6 | SLCO1B3, Q9NPD5 | SLCO1C1, Q9NYB5 |
Endogenous substrates | PGE2, bilirubin, bile acids, steroid conjugates, thyroid hormones | bilirubin, bile acids, leukotrienes, steroid conjugates, thyroid hormones | CCK-8, LTC4, bilirubin, bile acids, steroid conjugates, thyroid hormones | steroid conjugates, thyroid hormones |
Substrates | deltorphin II, rosuvastatin, BSP, talinolol, microcystin, fexofenadine, ouabain, antibiotics, anticancer drugs, beta blockers, fluoroquinolones, HIV protease inhibitors | rifampicin, BSP, fexofenadine, ACE inhibitors, anticancer drugs, antifungals, β-lactam antibiotics, bile acid derivatives and conjugates, endothelin receptor antagonists, HIV protease inhibitors, opioids, sartans, statins | erythromycin-A, rifampicin, BSP, amanitin, digoxin, phalloidin, saquinavir, fexofenadine, ouabain, anticancer drugs, β-lactam antibiotics, bile acid derivatives and conjugates, opioids, sartans, statins | BSP, statins |
Inhibitors (pIC50) | naringin, rifampicin, rifamycin SV | cyclosporin A, gemfibrozil, glycyrrhizin, indocyanine Green, rifampicin, rifamycin SV, sildenafil | cyclosporin A, gemfibrozil, glycyrrhizin, rifampicin, rifamycin SV, sildenafil | DPDPE, probenecid, taurocholic acid |
Radioligands (Kd) | [3H]BSP, [3H]DPDPE, [3H]estrone-3-sulphate | [3H]estradiol-17β-glucuronide, [3H]estrone-3-sulphate | [3H]BSP, [3H]CCK-8 (human, mouse, rat), [3H]estradiol-17β-glucuronide | [125I]thyroxine, [3H]BSP, [3H]estrone-3-sulphate |
Comment | – | Other inhibitors include fibrates, flavonoids, glitazones and macrolide antibiotics. pravastatin is used as a probe | Other inhibitors include HIV protease inhibitors, glitazones and macrolide antibiotics | – |
Nomenclature | OATP2A1 | OATP2B1 | OATP3A1 |
Systematic nomenclature | SLCO2A1 | SLCO2B1 | SLCO3A1 |
HGNC, UniProt | SLCO2A1, Q92959 | SLCO2B1, O94956 | SLCO3A1, Q9UIG8 |
Endogenous substrates | eicosanoids, prostaglandins | T4, dehydroepiandrosterone sulphate, estrone-3-sulphate | BQ123, vasopressin, prostaglandins, thyroid hormones |
Substrates | synthetic prostaglandin derivatives | telmisartan, glibenclamide, amiodarone, bosentan, BSP, talinolol, aliskiren, fexofenadine, statins | – |
Inhibitors (pIC50) | bromocresol green, BSP | gemfibrozil, glibenclamide, rifamycin SV | – |
Radioligands (Kd) | [3H]PGE2 | [3H]BSP, [3H]estrone-3-sulphate | [3H]estrone-3-sulphate, [3H]PGE2 |
Comment | Other inhibitors include NSAIDs | Other inhibitors include glitazones and citrus juices | – |
Nomenclature | OATP4A1 | OATP4C1 | OATP5A1 | OATP6A1 |
Systematic nomenclature | SLCO4A1 | SLCO4C1 | SLCO5A1 | SLCO6A1 |
HGNC, UniProt | SLCO4A1, Q96BD0 | SLCO4C1, Q6ZQN7 | SLCO5A1, Q9H2Y9 | SLCO6A1, Q86UG4 |
Endogenous substrates | bile acids, prostaglandins, steroid conjugates, thyroid hormones | cAMP, steroid conjugates, thyroid hormones | – | – |
Substrates | penicillin G | anticancer drugs, cardiac glycosides, dipeptidyl peptidase-4 inhibitors | – | – |
Radioligands (Kd) | [3H]estrone-3-sulphate | [3H]digoxin | – | – |
Further reading
- Aye IL. Singh AT. Keelan JA. Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem Biol Interact. 2009;180:327–339. doi: 10.1016/j.cbi.2009.04.012. [PMID:19426719] [DOI] [PubMed] [Google Scholar]
- Gutmann DA. Ward A. Urbatsch IL. Chang G. Veen HW. Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci. 2010;35:36–42. doi: 10.1016/j.tibs.2009.07.009. [PMID:19819701] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinz A. Tampé R. ABC transporters and immunity: mechanism of self-defense. Biochemistry. 2012;51:4981–4989. doi: 10.1021/bi300128f. [PMID:22668350] [DOI] [PubMed] [Google Scholar]
- Kemp S. Theodoulou FL. Wanders RJ. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol. 2011;164:1753–1766. doi: 10.1111/j.1476-5381.2011.01435.x. [PMID:21488864] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr ID. Haider AJ. Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol. 2011;164:1767–1779. doi: 10.1111/j.1476-5381.2010.01177.x. [PMID:21175590] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010;31:246–254. doi: 10.1016/j.tips.2010.03.003. [PMID:20417575] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Procko E. O'Mara ML. Bennett WF. Tieleman DP. Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J. 2009;23:1287–1302. doi: 10.1096/fj.08-121855. [PMID:19174475] [DOI] [PubMed] [Google Scholar]
- Ravna AW. Sager G. Molecular modeling studies of ABC transporters involved in multidrug resistance. Mini Rev Med Chem. 2009;9:186–193. doi: 10.2174/138955709787316065. [PMID:19200023] [DOI] [PubMed] [Google Scholar]
- Rees DC. Johnson E. Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10:218–227. doi: 10.1038/nrm2646. [PMID:19234479] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeger MA. Veen HW. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta. 2009;1794:725–737. doi: 10.1016/j.bbapap.2008.12.004. [PMID:19135557] [DOI] [PubMed] [Google Scholar]
Further reading
- El Far O. Seagar M. A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem. 2011;117:603–612. doi: 10.1111/j.1471-4159.2011.07234.x. [PMID:21375531] [DOI] [PubMed] [Google Scholar]
- Junge W. Sielaff H. Engelbrecht S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature. 2009;459:364–370. doi: 10.1038/nature08145. [PMID:19458712] [DOI] [PubMed] [Google Scholar]
- Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86. doi: 10.1146/annurev-physiol-012110-142317. [PMID:22335796] [DOI] [PubMed] [Google Scholar]
- Nakamoto RK. Baylis Scanlon JA. Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys. 2008;476:43–50. doi: 10.1016/j.abb.2008.05.004. [PMID:18515057] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakanishi-Matsui M. Sekiya M. Nakamoto RK. Futai M. The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta. 2010;1797:1343–1352. doi: 10.1016/j.bbabio.2010.02.014. [PMID:20170625] [DOI] [PubMed] [Google Scholar]
- Okuno D. Iino R. Noji H. Rotation and structure of FoF1-ATP synthase. J Biochem. 2011;149:655–664. doi: 10.1093/jb/mvr049. [PMID:21524994] [DOI] [PubMed] [Google Scholar]
- Ballmoos C. Cook GM. Dimroth P. Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys. 2008;37:43–64. doi: 10.1146/annurev.biophys.37.032807.130018. [PMID:18573072] [DOI] [PubMed] [Google Scholar]
- Ballmoos C. Wiedenmann A. Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem. 2009;78:649–672. doi: 10.1146/annurev.biochem.78.081307.104803. [PMID:19489730] [DOI] [PubMed] [Google Scholar]
Further reading
- Argüello JM. Raimunda D. González-Guerrero M. Metal transport across biomembranes: emerging models for a distinct chemistry. J Biol Chem. 2012;287:13510–13517. doi: 10.1074/jbc.R111.319343. [PMID:22389499] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benarroch EE. Na+, K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology. 2011;76:287–293. doi: 10.1212/WNL.0b013e3182074c2f. [PMID:21242497] [DOI] [PubMed] [Google Scholar]
- Brini M. Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009;89:1341–1378. doi: 10.1152/physrev.00032.2008. [PMID:19789383] [DOI] [PubMed] [Google Scholar]
- Bublitz M. Musgaard M. Poulsen H. Thøgersen L. Olesen C. Schiøtt B. Morth JP. Møller JV. Nissen P. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 2013;288:10759–10765. doi: 10.1074/jbc.R112.436550. [PMID:23400778] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cereijido M. Contreras RG. Shoshani L. Larre I. The Na+-K+-ATPase as self-adhesion molecule and hormone receptor. Am J Physiol, Cell Physiol. 2012;302:C473–C481. doi: 10.1152/ajpcell.00083.2011. [PMID:22049208] [DOI] [PubMed] [Google Scholar]
- Galougahi KK. Liu CC. Bundgaard H. Rasmussen HH. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling. Trends Cardiovasc Med. 2012;22:83–87. doi: 10.1016/j.tcm.2012.06.017. [PMID:23040838] [DOI] [PubMed] [Google Scholar]
- Gupta SP. Quantitative structure-activity relationship studies on Na+,K(+)-ATPase inhibitors. Chem Rev. 2012;112:3171–3192. doi: 10.1021/cr200097p. [PMID:22360614] [DOI] [PubMed] [Google Scholar]
- Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7:15–29. doi: 10.1038/nrneurol.2010.180. [PMID:21221114] [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Marqués RL. Holthuis JC. Pomorski TG. Pumping lipids with P4-ATPases. Biol Chem. 2011;392:67–76. doi: 10.1515/BC.2011.015. [PMID:21194369] [DOI] [PubMed] [Google Scholar]
- Mattle D. Sitsel O. Autzen HE. Meloni G. Gourdon P. Nissen P. On allosteric modulation of P-type Cu(+)-ATPases. J Mol Biol. 2013;425:2299–2308. doi: 10.1016/j.jmb.2013.03.008. [PMID:23500486] [DOI] [PubMed] [Google Scholar]
- Michelangeli F. East JM. A diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans. 2011;39:789–797. doi: 10.1042/BST0390789. [PMID:21599650] [DOI] [PubMed] [Google Scholar]
- Morth JP. Pedersen BP. Buch-Pedersen MJ. Andersen JP. Vilsen B. Palmgren MG. Nissen P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol. 2011;12:60–70. doi: 10.1038/nrm3031. [PMID:21179061] [DOI] [PubMed] [Google Scholar]
- Palmgren MG. Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–266. doi: 10.1146/annurev.biophys.093008.131331. [PMID:21351879] [DOI] [PubMed] [Google Scholar]
- Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium. 2011;50:139–146. doi: 10.1016/j.ceca.2011.01.004. [PMID:21310481] [DOI] [PubMed] [Google Scholar]
- Pizzo P. Lissandron V. Capitanio P. Pozzan T. Ca(2+) signalling in the Golgi apparatus. Cell Calcium. 2011;50:184–192. doi: 10.1016/j.ceca.2011.01.006. [PMID:21316101] [DOI] [PubMed] [Google Scholar]
- Reinhard L. Tidow H. Clausen MJ. Nissen P. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Cell Mol Life Sci. 2013;70:205–222. doi: 10.1007/s00018-012-1039-9. [PMID:22695678] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sebastian TT. Baldridge RD. Xu P. Graham TR. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta. 2012;1821:1068–1077. doi: 10.1016/j.bbalip.2011.12.007. [PMID:22234261] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bröer S. Palacín M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193–211. doi: 10.1042/BJ20101912. [PMID:21568940] [DOI] [PubMed] [Google Scholar]
- Chao XD. Fei F. Fei Z. The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res. 2010;35:1224–1230. doi: 10.1007/s11064-010-0178-3. [PMID:20440555] [DOI] [PubMed] [Google Scholar]
- Jiang J. Amara SG. New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology. 2011;60:172–181. doi: 10.1016/j.neuropharm.2010.07.019. [PMID:20708631] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanai Y. Clémençon B. Simonin A. Leuenberger M. Lochner M. Weisstanner M. Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med. 2013;34:108–120. doi: 10.1016/j.mam.2013.01.001. [PMID:23506861] [DOI] [PubMed] [Google Scholar]
- Kim K. Lee SG. Kegelman TP. Su ZZ. Das SK. Dash R. Dasgupta S. Barral PM. Hedvat M. Diaz P, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226:2484–2493. doi: 10.1002/jcp.22609. [PMID:21792905] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life. 2010;62:315–333. doi: 10.1002/iub.315. [PMID:20209635] [DOI] [PubMed] [Google Scholar]
- Leney SE. Tavaré JM. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol. 2009;203:1–18. doi: 10.1677/JOE-09-0037. [PMID:19389739] [DOI] [PubMed] [Google Scholar]
- Mueckler M. Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–138. doi: 10.1016/j.mam.2012.07.001. [PMID:23506862] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uldry M. Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004;447:480–489. doi: 10.1007/s00424-003-1085-0. [PMID:12750891] [DOI] [PubMed] [Google Scholar]
Further reading
- Closs EI. Boissel JP. Habermeier A. Rotmann A. Structure and function of cationic amino acid transporters (CATs) J Membr Biol. 2006;213:67–77. doi: 10.1007/s00232-006-0875-7. [PMID:17417706] [DOI] [PubMed] [Google Scholar]
- Fotiadis D. Kanai Y. Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med. 2013;34:139–158. doi: 10.1016/j.mam.2012.10.007. [PMID:23506863] [DOI] [PubMed] [Google Scholar]
- Palacín M. Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 2004;447:490–494. doi: 10.1007/s00424-003-1062-7. [PMID:14770309] [DOI] [PubMed] [Google Scholar]
- Palacín M. Nunes V. Font-Llitjós M. Jiménez-Vidal M. Fort J. Gasol E. Pineda M. Feliubadaló L. Chillarón J. Zorzano A. The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 2005;20:112–124. doi: 10.1152/physiol.00051.2004. [PMID:15772300] [DOI] [PubMed] [Google Scholar]
- Verrey F. Closs EI. Wagner CA. Palacin M. Endou H. Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–542. doi: 10.1007/s00424-003-1086-z. [PMID:14770310] [DOI] [PubMed] [Google Scholar]
Further reading
- Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol. 2009;212:1672–1683. doi: 10.1242/jeb.029454. (Pt 11): [PMID:19448077] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron WF. Chen L. Parker MD. Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol. 2009;212:1697–1706. doi: 10.1242/jeb.028563. (Pt 11): [PMID:19448079] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. Wang DK. Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod. 2012;86:99. doi: 10.1095/biolreprod.111.096826. [PMID:22262691] [DOI] [PubMed] [Google Scholar]
- Majumdar D. Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience. 2010;171:951–972. doi: 10.1016/j.neuroscience.2010.09.037. [PMID:20884330] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker MD. Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev. 2013;93:803–959. doi: 10.1152/physrev.00023.2012. [PMID:23589833] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romero MF. Chen AP. Parker MD. Boron WF. The SLC4 family of bicarbonate (HCO3−) transporters. Mol Aspects Med. 2013;34:159–182. doi: 10.1016/j.mam.2012.10.008. [PMID:23506864] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci. 2011;32:63–71. doi: 10.1016/j.tips.2010.11.011. [PMID:21211857] [DOI] [PubMed] [Google Scholar]
- Chao EC. Henry RR. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9:551–559. doi: 10.1038/nrd3180. [PMID:20508640] [DOI] [PubMed] [Google Scholar]
- Kinne RK. Castaneda F. SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol. 2011;203:105–126. doi: 10.1007/978-3-642-17214-4_5. [PMID:21484569] [DOI] [PubMed] [Google Scholar]
- Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34:183–196. doi: 10.1016/j.mam.2012.11.002. [PMID:23506865] [DOI] [PubMed] [Google Scholar]
- Wright EM. Loo DD. Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID:21527736] [DOI] [PubMed] [Google Scholar]
Further reading
- Bröer S. Gether U. The solute carrier 6 family of transporters. Br J Pharmacol. 2012;167:256–278. doi: 10.1111/j.1476-5381.2012.01975.x. [PMID:22519513] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pramod AB. Foster J. Carvelli L. Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med. 2013;34:197–219. doi: 10.1016/j.mam.2012.07.002. [PMID:23506866] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramamoorthy S. Shippenberg TS. Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther. 2011;129:220–238. doi: 10.1016/j.pharmthera.2010.09.009. [PMID:20951731] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudnick G. Cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry. 2011;50:7462–7475. doi: 10.1021/bi200926b. [PMID:21774491] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong H. Sánchez C. Caron MG. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. Biochem Pharmacol. 2012;83:435–442. doi: 10.1016/j.bcp.2011.09.020. [PMID:21983034] [DOI] [PubMed] [Google Scholar]
Further reading
- Annunziato L. Pignataro G. Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56:633–654. doi: 10.1124/pr.56.4.5. [PMID:15602012] [DOI] [PubMed] [Google Scholar]
- Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol. 2004;30:91–116. doi: 10.1385/MN:30:1:091. [PMID:15247490] [DOI] [PubMed] [Google Scholar]
- Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J. 2007;406:365–382. doi: 10.1042/BJ20070619. [PMID:17716241] [DOI] [PubMed] [Google Scholar]
- Quednau BD. Nicoll DA. Philipson KD. The sodium/calcium exchanger family-SLC8. Pflugers Arch. 2004;447:543–548. doi: 10.1007/s00424-003-1065-4. [PMID:12734757] [DOI] [PubMed] [Google Scholar]
- Watanabe Y. Koide Y. Kimura J. Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors. J Pharmacol Sci. 2006;102:7–16. doi: 10.1254/jphs.fmj06002x2. [PMID:16990699] [DOI] [PubMed] [Google Scholar]
- Zhang YH. Hancox JC. Regulation of cardiac Na+-Ca2+ exchanger activity by protein kinase phosphorylation–still a paradox? Cell Calcium. 2009;45:1–10. doi: 10.1016/j.ceca.2008.05.005. [PMID:18614228] [DOI] [PubMed] [Google Scholar]
Further reading
- Bobulescu IA. Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch. 2009;458:5–21. doi: 10.1007/s00424-008-0595-1. [PMID:18853182] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casey JR. Grinstein S. Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11:50–61. doi: 10.1038/nrm2820. [PMID:19997129] [DOI] [PubMed] [Google Scholar]
- Donowitz M. Ming Tse C. Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Aspects Med. 2013;34:236–251. doi: 10.1016/j.mam.2012.05.001. [PMID:23506868] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato A. Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol. 2011;73:261–281. doi: 10.1146/annurev-physiol-012110-142244. [PMID:21054167] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp G. Young H. Fliegel L. Structure and function of the human Na+/H+ exchanger isoform 1. Channels (Austin) 2008;2:329–336. doi: 10.4161/chan.2.5.6898. [PMID:19001864] [DOI] [PubMed] [Google Scholar]
- Ohgaki R. IJzendoorn SC. Matsushita M. Hoekstra D. Kanazawa H. Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry. 2011;50:443–450. doi: 10.1021/bi101082e. [PMID:21171650] [DOI] [PubMed] [Google Scholar]
Further reading
- Borges K. Slc10A4 - what do we know about the function of this "secret ligand carrier" protein? Exp Neurol. 2013;248C:258–261. doi: 10.1016/j.expneurol.2013.06.019. [Epub ahead of print]. [PMID:23810836] [DOI] [PubMed] [Google Scholar]
- Claro Silva T. Polli JE. Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med. 2013;34:252–269. doi: 10.1016/j.mam.2012.07.004. [PMID:23506869] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson PA. Lan T. Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. [PMID:19498215] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Döring B. Lütteke T. Geyer J. Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105–168. doi: 10.1016/B978-0-12-394316-3.00004-1. [PMID:23177985] [DOI] [PubMed] [Google Scholar]
- Zwicker BL. Agellon LB. Transport and biological activities of bile acids. Int J Biochem Cell Biol. 2013;45:1389–1398. doi: 10.1016/j.biocel.2013.04.012. [PMID:23603607] [DOI] [PubMed] [Google Scholar]
Further reading
- Li X. Yang Y. Zhou F. Zhang Y. Lu H. Jin Q. Gao L. SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PLoS ONE. 2011;6:e15831. doi: 10.1371/journal.pone.0015831. [PMID:21283567] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackenzie B. Hediger MA. SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch. 2004;447:571–579. doi: 10.1007/s00424-003-1141-9. [PMID:14530973] [DOI] [PubMed] [Google Scholar]
- Montalbetti N. Simonin A. Kovacs G. Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34:270–287. doi: 10.1016/j.mam.2013.01.002. [PMID:23506870] [DOI] [PubMed] [Google Scholar]
- Nevo Y. Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 2006;1763:609–620. doi: 10.1016/j.bbamcr.2006.05.007. [PMID:16908340] [DOI] [PubMed] [Google Scholar]
- Zheng W. Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–188. doi: 10.1016/j.pharmthera.2011.10.006. [PMID:22115751] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Arroyo JP. Kahle KT. Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol Aspects Med. 2013;34:288–298. doi: 10.1016/j.mam.2012.05.002. [PMID:23506871] [DOI] [PubMed] [Google Scholar]
- Gagnon KB. Delpire E. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am J Physiol, Cell Physiol. 2013;304:C693–C714. doi: 10.1152/ajpcell.00350.2012. [PMID:23325410] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamba G. Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch. 2009;458:61–76. doi: 10.1007/s00424-008-0607-1. [PMID:18982348] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hebert SC. Mount DB. Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch. 2004;447:580–593. doi: 10.1007/s00424-003-1066-3. [PMID:12739168] [DOI] [PubMed] [Google Scholar]
- Kahle KT. Rinehart J. Lifton RP. Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta. 2010;1802:1150–1158. doi: 10.1016/j.bbadis.2010.07.009. [PMID:20637866] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang F. Vallon V. Knipper M. Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol, Cell Physiol. 2007;293:C1187–C1208. doi: 10.1152/ajpcell.00024.2007. [PMID:17670895] [DOI] [PubMed] [Google Scholar]
Further reading
- Lee A. Dawson PA. Markovich D. NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol. 2005;37:1350–1356. doi: 10.1016/j.biocel.2005.02.013. [PMID:15833267] [DOI] [PubMed] [Google Scholar]
- Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol. 2011;300:F1267–F1270. doi: 10.1152/ajprenal.00061.2011. [PMID:21490138] [DOI] [PubMed] [Google Scholar]
- Markovich D. Aronson PS. Specificity and regulation of renal sulfate transporters. Annu Rev Physiol. 2007;69:361–375. doi: 10.1146/annurev.physiol.69.040705.141319. [PMID:17002596] [DOI] [PubMed] [Google Scholar]
- Markovich D. Murer H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 2004;447:594–602. doi: 10.1007/s00424-003-1128-6. [PMID:12915942] [DOI] [PubMed] [Google Scholar]
Further reading
- Pannabecker TL. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am J Physiol Regul Integr Comp Physiol. 2013;304:R488–R503. doi: 10.1152/ajpregu.00456.2012. [PMID:23364530] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shayakul C. Clémençon B. Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med. 2013;34:313–322. doi: 10.1016/j.mam.2012.12.003. [PMID:23506873] [DOI] [PubMed] [Google Scholar]
- Shayakul C. Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch. 2004;447:603–609. doi: 10.1007/s00424-003-1124-x. [PMID:12856182] [DOI] [PubMed] [Google Scholar]
- Smith CP. Mammalian urea transporters. Exp Physiol. 2009;94:180–185. doi: 10.1113/expphysiol.2008.043042. [PMID:19028811] [DOI] [PubMed] [Google Scholar]
- Stewart G. The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol. 2011;164:1780–1792. doi: 10.1111/j.1476-5381.2011.01377.x. [PMID:21449978] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiol (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
- Biegel A. Knütter I. Hartrodt B. Gebauer S. Theis S. Luckner P. Kottra G. Rastetter M. Zebisch K. Thondorf I, et al. The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids. 2006;31:137–156. doi: 10.1007/s00726-006-0331-0. [PMID:16868651] [DOI] [PubMed] [Google Scholar]
- Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol. 2009;5:887–905. doi: 10.1517/17425250903042292. [PMID:19519280] [DOI] [PubMed] [Google Scholar]
- Ingersoll SA. Ayyadurai S. Charania MA. Laroui H. Yan Y. Merlin D. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2012;302:G484–G492. doi: 10.1152/ajpgi.00477.2011. [PMID:22194420] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith DE. Clémençon B. Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. 2013;34:323–336. doi: 10.1016/j.mam.2012.11.003. [PMID:23506874] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites DT. Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol. 2007;92:603–619. doi: 10.1113/expphysiol.2005.029959. [PMID:17468205] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
- Braun D. Wirth EK. Schweizer U. Thyroid hormone transporters in the brain. Rev Neurosci. 2010;21:173–186. doi: 10.1515/revneuro.2010.21.3.173. [PMID:20879691] [DOI] [PubMed] [Google Scholar]
- Friesema EC. Visser WE. Visser TJ. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol. 2010;322:107–113. doi: 10.1016/j.mce.2010.01.016. [PMID:20083155] [DOI] [PubMed] [Google Scholar]
- Halestrap AP. Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447:619–628. doi: 10.1007/s00424-003-1067-2. [PMID:12739169] [DOI] [PubMed] [Google Scholar]
- Heuer H. Visser TJ. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology. 2009;150:1078–1083. doi: 10.1210/en.2008-1518. [PMID:19179441] [DOI] [PubMed] [Google Scholar]
- Jansen J. Friesema EC. Milici C. Visser TJ. Thyroid hormone transporters in health and disease. Thyroid. 2005;15:757–768. doi: 10.1089/thy.2005.15.757. [PMID:16131319] [DOI] [PubMed] [Google Scholar]
- Meredith D. Christian HC. The SLC16 monocaboxylate transporter family. Xenobiotica. 2008;38:1072–1106. doi: 10.1080/00498250802010868. [PMID:18668440] [DOI] [PubMed] [Google Scholar]
- Morris ME. Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J. 2008;10:311–321. doi: 10.1208/s12248-008-9035-6. [PMID:18523892] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deure WM. Peeters RP. Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol. 2010;44:1–11. doi: 10.1677/JME-09-0042. [PMID:19541799] [DOI] [PubMed] [Google Scholar]
- Visser TJ. Thyroid hormone transporters. Horm Res. 2007;68 Suppl 5:28–30. doi: 10.1159/000110469. [PMID:18174701] [DOI] [PubMed] [Google Scholar]
- Visser WE. Friesema EC. Jansen J. Visser TJ. Thyroid hormone transport in and out of cells. Trends Endocrinol Metab. 2008;19:50–56. doi: 10.1016/j.tem.2007.11.003. [PMID:18291666] [DOI] [PubMed] [Google Scholar]
Further reading
- Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
- El Mestikawy S. Wallén-Mackenzie A. Fortin GM. Descarries L. Trudeau LE. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci. 2011;12:204–216. doi: 10.1038/nrn2969. [PMID:21415847] [DOI] [PubMed] [Google Scholar]
- Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
- Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
- Omote H. Miyaji T. Juge N. Moriyama Y. Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry. 2011;50:5558–5565. doi: 10.1021/bi200567k. [PMID:21612282] [DOI] [PubMed] [Google Scholar]
- Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med. 2013;34:350–359. doi: 10.1016/j.mam.2012.05.004. [PMID:23506876] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Chaudhry FA. Edwards RH. Fonnum F. Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol. 2008;48:277–301. doi: 10.1146/annurev.pharmtox.46.120604.141146. [PMID:17883368] [DOI] [PubMed] [Google Scholar]
- Eiden LE. Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci. 2011;1216:86–98. doi: 10.1111/j.1749-6632.2010.05906.x. [PMID:21272013] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giboureau N. Som IM. Boucher-Arnold A. Guilloteau D. Kassiou M. PET radioligands for the vesicular acetylcholine transporter (VAChT) Curr Top Med Chem. 2010;10:1569–1583. doi: 10.2174/156802610793176846. [PMID:20583990] [DOI] [PubMed] [Google Scholar]
- Khare P. White AR. Mulakaluri A. Parsons SM. Equilibrium binding and transport by vesicular acetylcholine transporter. Methods Mol Biol. 2010;637:181–219. doi: 10.1007/978-1-60761-700-6_10. [PMID:20419436] [DOI] [PubMed] [Google Scholar]
- Lawal HO. Krantz DE. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med. 2013;34:360–372. doi: 10.1016/j.mam.2012.07.005. [PMID:23506877] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prado VF. Roy A. Kolisnyk B. Gros R. Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–274. doi: 10.1042/BJ20121662. [PMID:23410039] [DOI] [PubMed] [Google Scholar]
- Ramamoorthy S. Shippenberg TS. Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther. 2011;129:220–238. doi: 10.1016/j.pharmthera.2010.09.009. [PMID:20951731] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimalasena K. Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev. 2011;31:483–519. doi: 10.1002/med.20187. [PMID:20135628] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Ganapathy V. Smith SB. Prasad PD. SLC19: the folate/thiamine transporter family. Pflugers Arch. 2004;447:641–646. doi: 10.1007/s00424-003-1068-1. [PMID:14770311] [DOI] [PubMed] [Google Scholar]
- Goldman ID. Chattopadhyay S. Zhao R. Moran R. The antifolates: evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Curr Opin Investig Drugs. 2010;11:1409–1423. [PMID:21154123] [PubMed] [Google Scholar]
- Matherly LH. Hou Z. Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. Vitam Horm. 2008;79:145–184. doi: 10.1016/S0083-6729(08)00405-6. [PMID:18804694] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuasa H. Inoue K. Hayashi Y. Molecular and functional characteristics of proton-coupled folate transporter. J Pharm Sci. 2009;98:1608–1616. doi: 10.1002/jps.21515. [PMID:18823045] [DOI] [PubMed] [Google Scholar]
- Zhao R. Diop-Bove N. Visentin M. Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi: 10.1146/annurev-nutr-072610-145133. [PMID:21568705] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao R. Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–385. doi: 10.1016/j.mam.2012.07.006. [PMID:23506878] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
- Forster IC. Hernando N. Biber J. Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34:386–395. doi: 10.1016/j.mam.2012.07.007. [PMID:23506879] [DOI] [PubMed] [Google Scholar]
- Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
- Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
- Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Burckhardt G. Drug transport by Organic Anion Transporters (OATs) Pharmacol Ther. 2012;136:106–130. doi: 10.1016/j.pharmthera.2012.07.010. [PMID:22841915] [DOI] [PubMed] [Google Scholar]
- Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34:413–435. doi: 10.1016/j.mam.2012.10.010. [PMID:23506881] [DOI] [PubMed] [Google Scholar]
- König J. Müller F. Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–966. doi: 10.1124/pr.113.007518. [PMID:23686349] [DOI] [PubMed] [Google Scholar]
- Motohashi H. Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15:581–588. doi: 10.1208/s12248-013-9465-7. [PMID:23435786] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bürzle M. Suzuki Y. Ackermann D. Miyazaki H. Maeda N. Clémençon B. Burrier R. Hediger MA. The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med. 2013;34:436–454. doi: 10.1016/j.mam.2012.12.002. [PMID:23506882] [DOI] [PubMed] [Google Scholar]
- May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol. 2011;164:1793–1801. doi: 10.1111/j.1476-5381.2011.01350.x. [PMID:21418192] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivas CI. Zúñiga FA. Salas-Burgos A. Mardones L. Ormazabal V. Vera JC. Vitamin C transporters. J Physiol Biochem. 2008;64:357–375. doi: 10.1007/BF03174092. [PMID:19391462] [DOI] [PubMed] [Google Scholar]
- Savini I. Rossi A. Pierro C. Avigliano L. Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids. 2008;34:347–355. doi: 10.1007/s00726-007-0555-7. [PMID:17541511] [DOI] [PubMed] [Google Scholar]
Further reading
- Altimimi HF. Schnetkamp PP. Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles. Channels (Austin) 2007;1:62–69. doi: 10.4161/chan.4366. [PMID:18690016] [DOI] [PubMed] [Google Scholar]
- Schnetkamp PP. The SLC24 gene family of Na+/Ca2+-K+ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol Aspects Med. 2013;34:455–464. doi: 10.1016/j.mam.2012.07.008. [PMID:23506883] [DOI] [PubMed] [Google Scholar]
Further reading
- Cioffi F. Senese R. Lange P. Goglia F. Lanni A. Lombardi A. Uncoupling proteins: a complex journey to function discovery. Biofactors. 2009;35:417–428. doi: 10.1002/biof.54. [PMID:19626697] [DOI] [PubMed] [Google Scholar]
- Clémençon B. Babot M. Trézéguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol Aspects Med. 2013;34:485–493. doi: 10.1016/j.mam.2012.05.006. [PMID:23506884] [DOI] [PubMed] [Google Scholar]
- Gnoni GV. Priore P. Geelen MJ. Siculella L. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life. 2009;61:987–994. doi: 10.1002/iub.249. [PMID:19787704] [DOI] [PubMed] [Google Scholar]
- Gutiérrez-Aguilar M. Baines CP. Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem J. 2013;454:371–386. doi: 10.1042/BJ20121753. [PMID:23988125] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 2004;447:689–709. doi: 10.1007/s00424-003-1099-7. [PMID:14598172] [DOI] [PubMed] [Google Scholar]
- Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 2013;34:465–484. doi: 10.1016/j.mam.2012.05.005. [PMID:23266187] [DOI] [PubMed] [Google Scholar]
Further reading
- Alper SL. Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 2013;34:494–515. doi: 10.1016/j.mam.2012.07.009. [PMID:23506885] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorwart MR. Shcheynikov N. Yang D. Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda) 2008;23:104–114. doi: 10.1152/physiol.00037.2007. [PMID:18400693] [DOI] [PubMed] [Google Scholar]
- Kato A. Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol. 2011;73:261–281. doi: 10.1146/annurev-physiol-012110-142244. [PMID:21054167] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mount DB. Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 2004;447:710–721. doi: 10.1007/s00424-003-1090-3. [PMID:12759755] [DOI] [PubMed] [Google Scholar]
- Nofziger C. Dossena S. Suzuki S. Izuhara K. Paulmichl M. Pendrin function in airway epithelia. Cell Physiol Biochem. 2011;28:571–578. doi: 10.1159/000335115. [PMID:22116372] [DOI] [PubMed] [Google Scholar]
- Ohana E. Yang D. Shcheynikov N. Muallem S. Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol (Lond) 2009;587:2179–2185. doi: 10.1113/jphysiol.2008.164863. (Pt 10): [PMID:19015189] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soleimani M. SLC26 Cl(-)/HCO3(-) exchangers in the kidney: roles in health and disease. Kidney Int. 2013 doi: 10.1038/ki.2013.138. [Epub ahead of print]. [PMID:23636174] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Anderson CM. Stahl A. SLC27 fatty acid transport proteins. Mol Aspects Med. 2013;34:516–528. doi: 10.1016/j.mam.2012.07.010. [PMID:23506886] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwenk RW. Holloway GP. Luiken JJ. Bonen A. Glatz JF. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids. 2010;82:149–154. doi: 10.1016/j.plefa.2010.02.029. [PMID:20206486] [DOI] [PubMed] [Google Scholar]
Further reading
- Baldwin SA. McConkey GA. Cass CE. Young JD. Nucleoside transport as a potential target for chemotherapy in malaria. Curr Pharm Des. 2007;13:569–580. doi: 10.2174/138161207780162845. [PMID:17346175] [DOI] [PubMed] [Google Scholar]
- Cano-Soldado P. Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev. 2012;32:428–457. doi: 10.1002/med.20221. [PMID:21287570] [DOI] [PubMed] [Google Scholar]
- King AE. Ackley MA. Cass CE. Young JD. Baldwin SA. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006;27:416–425. doi: 10.1016/j.tips.2006.06.004. [PMID:16820221] [DOI] [PubMed] [Google Scholar]
- Pastor-Anglada M. Cano-Soldado P. Errasti-Murugarren E. Casado FJ. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica. 2008;38:972–994. doi: 10.1080/00498250802069096. [PMID:18668436] [DOI] [PubMed] [Google Scholar]
- Young JD. Yao SY. Baldwin JM. Cass CE. Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34:529–547. doi: 10.1016/j.mam.2012.05.007. [PMID:23506887] [DOI] [PubMed] [Google Scholar]
Further reading
- Bouron A. Oberwinkler J. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch. 2013 doi: 10.1007/s00424-013-1295-z. [Epub ahead of print]. [PMID:23719866] [DOI] [PubMed] [Google Scholar]
- Huang L. Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med. 2013;34:548–560. doi: 10.1016/j.mam.2012.05.008. [PMID:23506888] [DOI] [PubMed] [Google Scholar]
- Kawasaki E. ZnT8 and type 1 diabetes. Endocr J. 2012;59:531–537. doi: 10.1507/endocrj.ej12-0069. [PMID:22447136] [DOI] [PubMed] [Google Scholar]
- Palmiter RD. Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 2004;447:744–751. doi: 10.1007/s00424-003-1070-7. [PMID:12748859] [DOI] [PubMed] [Google Scholar]
- Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551. doi: 10.1007/s00125-010-1793-x. [PMID:20490449] [DOI] [PubMed] [Google Scholar]
- Wang X. Zhou B. Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life. 2010;62:176–182. doi: 10.1002/iub.291. [PMID:20120011] [DOI] [PubMed] [Google Scholar]
Further reading
- Howell SB. Safaei R. Larson CA. Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol. 2010;77:887–894. doi: 10.1124/mol.109.063172. [PMID:20159940] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H. Wu X. Lee J. SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med. 2013;34:561–570. doi: 10.1016/j.mam.2012.07.011. [PMID:23506889] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nose Y. Rees EM. Thiele DJ. Structure of the Ctr1 copper trans'PORE'ter reveals novel architecture. Trends Biochem Sci. 2006;31:604–607. doi: 10.1016/j.tibs.2006.09.003. [PMID:16982196] [DOI] [PubMed] [Google Scholar]
- Petris MJ. The SLC31 (Ctr) copper transporter family. Pflugers Arch. 2004;447:752–755. doi: 10.1007/s00424-003-1092-1. [PMID:12827356] [DOI] [PubMed] [Google Scholar]
- Zheng W. Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–188. doi: 10.1016/j.pharmthera.2011.10.006. [PMID:22115751] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Erickson JD. De Gois S. Varoqui H. Schafer MK. Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int. 2006;48:643–649. doi: 10.1016/j.neuint.2005.12.029. [PMID:16546297] [DOI] [PubMed] [Google Scholar]
- Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie. 2000;82:327–337. doi: 10.1016/s0300-9084(00)00221-2. [PMID:10865121] [DOI] [PubMed] [Google Scholar]
- Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch. 2004;447:756–759. doi: 10.1007/s00424-003-1091-2. [PMID:12750892] [DOI] [PubMed] [Google Scholar]
- Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]
Further reading
- Hirabayashi Y. Kanamori A. Nomura KH. Nomura K. The acetyl-CoA transporter family SLC33. Pflugers Arch. 2004;447:760–762. doi: 10.1007/s00424-003-1071-6. [PMID:12739170] [DOI] [PubMed] [Google Scholar]
- Hirabayashi Y. Nomura KH. Nomura K. The acetyl-CoA transporter family SLC33. Mol Aspects Med. 2013;34:586–589. doi: 10.1016/j.mam.2012.05.009. [PMID:23506891] [DOI] [PubMed] [Google Scholar]
Further reading
- Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
- Forster IC. Hernando N. Biber J. Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34:386–395. doi: 10.1016/j.mam.2012.07.007. [PMID:23506879] [DOI] [PubMed] [Google Scholar]
- Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
- Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
- Murer H. Forster I. Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447:763–767. doi: 10.1007/s00424-003-1072-5. [PMID:12750889] [DOI] [PubMed] [Google Scholar]
- Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Ishida N. Kawakita M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35) Pflugers Arch. 2004;447:768–775. doi: 10.1007/s00424-003-1093-0. [PMID:12759756] [DOI] [PubMed] [Google Scholar]
- Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med. 2013;34:590–600. doi: 10.1016/j.mam.2012.12.004. [PMID:23506892] [DOI] [PubMed] [Google Scholar]
Further reading
- Boll M. Daniel H. Gasnier B. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch. 2004;447:776–779. doi: 10.1007/s00424-003-1073-4. [PMID:12748860] [DOI] [PubMed] [Google Scholar]
- Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]
- Thwaites DT. Anderson CM. Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1. Biochim Biophys Acta. 2007;1768:179–197. doi: 10.1016/j.bbamem.2006.10.001. [PMID:17123464] [DOI] [PubMed] [Google Scholar]
- Thwaites DT. Anderson CM. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol. 2011;164:1802–1816. doi: 10.1111/j.1476-5381.2011.01438.x. [PMID:21501141] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bartoloni L. Antonarakis SE. The human sugar-phosphate/phosphate exchanger family SLC37. Pflugers Arch. 2004;447:780–783. doi: 10.1007/s00424-003-1105-0. [PMID:12811562] [DOI] [PubMed] [Google Scholar]
- Chou JY. Sik Jun H. Mansfield BC. The SLC37 family of phosphate-linked sugar phosphate antiporters. Mol Aspects Med. 2013;34:601–611. doi: 10.1016/j.mam.2012.05.010. [PMID:23506893] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bröer S. Palacín M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193–211. doi: 10.1042/BJ20101912. [PMID:21568940] [DOI] [PubMed] [Google Scholar]
- Hägglund MG. Sreedharan S. Nilsson VC. Shaik JH. Almkvist IM. Bäcklin S. Wrange O. Fredriksson R. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem. 2011;286:20500–20511. doi: 10.1074/jbc.M110.162404. [PMID:21511949] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackenzie B. Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447:784–795. doi: 10.1007/s00424-003-1117-9. [PMID:12845534] [DOI] [PubMed] [Google Scholar]
- Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]
- Sundberg BE. Wååg E. Jacobsson JA. Stephansson O. Rumaks J. Svirskis S. Alsiö J. Roman E. Ebendal T. Klusa V, et al. The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32, SLC36, and SLC38. J Mol Neurosci. 2008;35:179–193. doi: 10.1007/s12031-008-9046-x. [PMID:18418736] [DOI] [PubMed] [Google Scholar]
Further reading
- Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447:796–800. doi: 10.1007/s00424-003-1074-3. [PMID:12748861] [DOI] [PubMed] [Google Scholar]
- Franz MC. Anderle P. Bürzle M. Suzuki Y. Freeman MR. Hediger MA. Kovacs G. Zinc transporters in prostate cancer. Mol Aspects Med. 2013;34:735–741. doi: 10.1016/j.mam.2012.11.007. [PMID:23506906] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himeno S. Yanagiya T. Fujishiro H. The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie. 2009;91:1218–1222. doi: 10.1016/j.biochi.2009.04.002. [PMID:19375483] [DOI] [PubMed] [Google Scholar]
- Jeong J. Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011. [PMID:23506894] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551. doi: 10.1007/s00125-010-1793-x. [PMID:20490449] [DOI] [PubMed] [Google Scholar]
- Thévenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 2010;23:857–875. doi: 10.1007/s10534-010-9309-1. [PMID:20204475] [DOI] [PubMed] [Google Scholar]
Further reading
- McKie AT. Barlow DJ. The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1) Pflugers Arch. 2004;447:801–806. doi: 10.1007/s00424-003-1102-3. [PMID:12836025] [DOI] [PubMed] [Google Scholar]
- Montalbetti N. Simonin A. Kovacs G. Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34:270–287. doi: 10.1016/j.mam.2013.01.002. [PMID:23506870] [DOI] [PubMed] [Google Scholar]
Further reading
- Moomaw AS. Maguire ME. The unique nature of mg2+ channels. Physiology (Bethesda) 2008;23:275–285. doi: 10.1152/physiol.00019.2008. [PMID:18927203] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payandeh J. Pfoh R. Pai EF. The structure and regulation of magnesium selective ion channels. Biochim Biophys Acta. 2013 doi: 10.1016/j.bbamem.2013.08.002. [Epub ahead of print]. [PMID:23954807] [DOI] [PubMed] [Google Scholar]
- Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol, Cell Physiol. 2010;298:C407–C429. doi: 10.1152/ajpcell.00124.2009. [PMID:19940067] [DOI] [PubMed] [Google Scholar]
- Sahni J. Scharenberg AM. The SLC41 family of MgtE-like magnesium transporters. Mol Aspects Med. 2013;34:620–628. doi: 10.1016/j.mam.2012.05.012. [PMID:23506895] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Bodoy S. Fotiadis D. Stoeger C. Kanai Y. Palacín M. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol Aspects Med. 2013;34:638–645. doi: 10.1016/j.mam.2012.12.006. [PMID:23268354] [DOI] [PubMed] [Google Scholar]
Further reading
- Lockman PR. Allen DD. The transport of choline. Drug Dev Ind Pharm. 2002;28:749–771. doi: 10.1081/ddc-120005622. [PMID:12236062] [DOI] [PubMed] [Google Scholar]
- Michel V. Yuan Z. Ramsubir S. Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 2006;231:490–504. doi: 10.1177/153537020623100503. [PMID:16636297] [DOI] [PubMed] [Google Scholar]
- Traiffort E. O'Regan S. Ruat M. The choline transporter-like family SLC44: properties and roles in human diseases. Mol Aspects Med. 2013;34:646–654. doi: 10.1016/j.mam.2012.10.011. [PMID:23506897] [DOI] [PubMed] [Google Scholar]
Further reading
- Vitavska O. Wieczorek H. The SLC45 gene family of putative sugar transporters. Mol Aspects Med. 2013;34:655–660. doi: 10.1016/j.mam.2012.05.014. [PMID:23506898] [DOI] [PubMed] [Google Scholar]
Further reading
- Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
- Desmoulin SK. Hou Z. Gangjee A. Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther. 2012;13:1355–1373. doi: 10.4161/cbt.22020. [PMID:22954694] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites DT. Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol. 2007;92:603–619. doi: 10.1113/expphysiol.2005.029959. [PMID:17468205] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao R. Diop-Bove N. Visentin M. Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi: 10.1146/annurev-nutr-072610-145133. [PMID:21568705] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao R. Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–385. doi: 10.1016/j.mam.2012.07.006. [PMID:23506878] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Damme K. Nies AT. Schaeffeler E. Schwab M. Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab Rev. 2011;43:499–523. doi: 10.3109/03602532.2011.602687. [PMID:21923552] [DOI] [PubMed] [Google Scholar]
- Motohashi H. Inui K. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med. 2013;34:661–668. doi: 10.1016/j.mam.2012.11.004. [PMID:23506899] [DOI] [PubMed] [Google Scholar]
- Terada T. Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A) Biochem Pharmacol. 2008;75:1689–1696. doi: 10.1016/j.bcp.2007.12.008. [PMID:18262170] [DOI] [PubMed] [Google Scholar]
- Yonezawa A. Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011;164:1817–1825. doi: 10.1111/j.1476-5381.2011.01394.x. [PMID:21457222] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Khan AA. Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med. 2013;34:669–682. doi: 10.1016/j.mam.2012.07.013. [PMID:23506900] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Khan AA. Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta. 2011;1813:668–682. doi: 10.1016/j.bbamcr.2011.01.008. [PMID:21238504] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan AA. Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med. 2013;34:669–682. doi: 10.1016/j.mam.2012.07.013. [PMID:23506900] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishnamurthy P. Xie T. Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114:345–358. doi: 10.1016/j.pharmthera.2007.02.001. [PMID:17368550] [DOI] [PubMed] [Google Scholar]
- Latunde-Dada GO. Simpson RJ. McKie AT. Recent advances in mammalian haem transport. Trends Biochem Sci. 2006;31:182–188. doi: 10.1016/j.tibs.2006.01.005. [PMID:16487711] [DOI] [PubMed] [Google Scholar]
Further reading
- Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34:183–196. doi: 10.1016/j.mam.2012.11.002. [PMID:23506865] [DOI] [PubMed] [Google Scholar]
- Wright EM. Loo DD. Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID:21527736] [DOI] [PubMed] [Google Scholar]
Further reading
- Ballatori N. Pleiotropic functions of the organic solute transporter Ostα-Ostβ. Dig Dis. 2011;29:13–17. doi: 10.1159/000324123. [PMID:21691099] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballatori N. Christian WV. Wheeler SG. Hammond CL. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol Aspects Med. 2013;34:683–692. doi: 10.1016/j.mam.2012.11.005. [PMID:23506901] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson PA. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol. 2011;201:169–203. doi: 10.1007/978-3-642-14541-4_4. [PMID:21103970] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Yamamoto S. Inoue K. Ohta KY. Fukatsu R. Maeda JY. Yoshida Y. Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J Biochem. 2009;145:437–443. doi: 10.1093/jb/mvn181. [PMID:19122205] [DOI] [PubMed] [Google Scholar]
- Yonezawa A. Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34:693–701. doi: 10.1016/j.mam.2012.07.014. [PMID:23506902] [DOI] [PubMed] [Google Scholar]
Further reading
- Hagenbuch B. Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther. 2010;87:39–47. doi: 10.1038/clpt.2009.235. [PMID:19924123] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagenbuch B. Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–665. doi: 10.1007/s00424-003-1168-y. [PMID:14579113] [DOI] [PubMed] [Google Scholar]
- König J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;201:1–28. doi: 10.1007/978-3-642-14541-4_1. [PMID:21103967] [DOI] [PubMed] [Google Scholar]
- Niemi M. Pasanen MK. Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–181. doi: 10.1124/pr.110.002857. [PMID:21245207] [DOI] [PubMed] [Google Scholar]
References
- 1.Bakos E, Homolya L. Pflugers Arch. 2007;453:621–641. doi: 10.1007/s00424-006-0160-8. [PMID: 17187268 ] [DOI] [PubMed] [Google Scholar]
- 2.Borst P, et al. Pflugers Arch. 2007;453:661–673. doi: 10.1007/s00424-006-0054-9. [PMID: 16586096 ] [DOI] [PubMed] [Google Scholar]
- 3.Chen ZQ, et al. J Biol Chem. 2006;281:7452–7457. doi: 10.1074/jbc.M510603200. [PMID: 16421098 ] [DOI] [PubMed] [Google Scholar]
- 4.Elliott AM, Al-Hajj MA. Mol Cancer Res. 2009;7:79–87. doi: 10.1158/1541-7786.MCR-08-0235. [PMID: 19147539 ] [DOI] [PubMed] [Google Scholar]
- 5.Helias V, et al. Nat Genet. 2012;44:170–173. doi: 10.1038/ng.1069. [PMID: 22246506 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Hollingworth P, et al. Nat Genet. 2011;43:429–435. doi: 10.1038/ng.803. [PMID: 21460840 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kamakura A, et al. Biochem Biophys Res Commun. 2008;377:847–851. doi: 10.1016/j.bbrc.2008.10.078. [PMID: 18952056 ] [DOI] [PubMed] [Google Scholar]
- 8.Kashiwayama Y, et al. Exp Cell Res. 2009;315:190–205. doi: 10.1016/j.yexcr.2008.10.031. [PMID: 19010322 ] [DOI] [PubMed] [Google Scholar]
- 9.Kemp S, et al. Br J Pharmacol. 2011;164:1753–1766. doi: 10.1111/j.1476-5381.2011.01435.x. [PMID: 21488864 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Kerr ID, et al. Br J Pharmacol. 2011;164:1767–1779. doi: 10.1111/j.1476-5381.2010.01177.x. [PMID: 21175590 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Krishnamurthy PC, et al. Nature. 2006;443:586–589. doi: 10.1038/nature05125. [PMID: 17006453 ] [DOI] [PubMed] [Google Scholar]
- 12.Leier I, et al. J Biol Chem. 1994;269:27807–27810. [PMID: 7961706 ] [PubMed] [Google Scholar]
- 13.Oude Elferink RP, Paulusma CC. Pflugers Arch. 2007;453:601–610. doi: 10.1007/s00424-006-0062-9. [PMID: 16622704 ] [DOI] [PubMed] [Google Scholar]
- 14.Paytubi S, et al. J Biol Chem. 2009;284:24061–24073. doi: 10.1074/jbc.M109.031625. [PMID: 19570978 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Pondarre C, et al. Blood. 2007;109:3567–3569. doi: 10.1182/blood-2006-04-015768. [PMID: 17192398 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Reid G, et al. Proc Natl Acad Sci USA. 2003;100:9244–9249. doi: 10.1073/pnas.1033060100. [PMID: 12835412 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Schatton T, et al. Nature. 2008;451:345–349. doi: 10.1038/nature06489. [PMID: 18202660 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Shintre CA, et al. Proc Natl Acad Sci USA. 2013;110:9710–9715. doi: 10.1073/pnas.1217042110. [PMID: 23716676 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Stieger B. Curr Opin Lipidol. 2009;20:176–181. doi: 10.1097/MOL.0b013e32832b677c. [PMID: 19684528 ] [DOI] [PubMed] [Google Scholar]
- 20.Suzuki H, Sugiyama Y. Semin Liver Dis. 1998;18:359–376. doi: 10.1055/s-2007-1007170. [PMID: 9875554 ] [DOI] [PubMed] [Google Scholar]
- 21.van Roermund CW, et al. FASEB J. 2008;22:4201–4208. doi: 10.1096/fj.08-110866. [PMID: 18757502 ] [DOI] [PubMed] [Google Scholar]
- 22.van Roermund CW, et al. Biochim Biophys Acta. 2011;1811:148–152. doi: 10.1016/j.bbalip.2010.11.010. [PMID: 21145416 ] [DOI] [PubMed] [Google Scholar]
- 23.Zuo Y, et al. J Biol Chem. 2008;283:36624–36635. doi: 10.1074/jbc.M807377200. [PMID: 18957418 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Bagrov AY, et al. Pharmacol Rev. 2009;61:9–38. doi: 10.1124/pr.108.000711. [PMID: 19325075 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Chong X, Rahimtula AD. Biochem Pharmacol. 1992;44:1401–1409. doi: 10.1016/0006-2952(92)90542-q. [PMID: 1417961 ] [DOI] [PubMed] [Google Scholar]
- 26.Hu Z, et al. Nat Genet. 2000;24:61–65. doi: 10.1038/71701. [PMID: 10615129 ] [DOI] [PubMed] [Google Scholar]
- 27.Lytton J, et al. J Biol Chem. 1991;266:17067–17071. [PMID: 1832668 ] [PubMed] [Google Scholar]
- 28.Pestov NB, et al. Am J Physiol, Cell Physiol. 2006;291:C366–C374. doi: 10.1152/ajpcell.00042.2006. [PMID: 16525125 ] [DOI] [PubMed] [Google Scholar]
- 29.Seidler NW, et al. J Biol Chem. 1989;264:17816–17823. [PMID: 2530215 ] [PubMed] [Google Scholar]
- 30.Tóth A, et al. Biochem Biophys Res Commun. 2002;293:777–782. doi: 10.1016/S0006-291X(02)00293-0. [PMID: 12054538 ] [DOI] [PubMed] [Google Scholar]
- 31.Amara SG, Arriza JL. Curr Opin Neurobiol. 1993;3:337–344. doi: 10.1016/0959-4388(93)90126-j. [PMID: 8103691 ] [DOI] [PubMed] [Google Scholar]
- 32.Apricò K, et al. J Neurosci Res. 2004;75:751–759. doi: 10.1002/jnr.20013. [PMID: 14994336 ] [DOI] [PubMed] [Google Scholar]
- 33.Apricò K, et al. Neurochem Int. 2007;51:507–516. doi: 10.1016/j.neuint.2007.05.011. [PMID: 17590480 ] [DOI] [PubMed] [Google Scholar]
- 34.Apricó K, et al. J Neurochem. 2001;77:1218–1225. doi: 10.1046/j.1471-4159.2001.00337.x. [PMID: 11389172 ] [DOI] [PubMed] [Google Scholar]
- 35.Arriza JL, et al. J Biol Chem. 1993;268:15329–15332. [PMID: 8101838 ] [PubMed] [Google Scholar]
- 36.Bailey CG, et al. J Clin Invest. 2011;121:446–453. doi: 10.1172/JCI44474. [PMID: 21123949 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Beart PM, O'Shea RD. Br J Pharmacol. 2007;150:5–17. doi: 10.1038/sj.bjp.0706949. [PMID: 17088867 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Boudker O, et al. Nature. 2007;445:387–393. doi: 10.1038/nature05455. [PMID: 17230192 ] [DOI] [PubMed] [Google Scholar]
- 39.Bröer A, et al. J Neurochem. 1999;73:2184–2194. [PMID: 10537079 ] [PubMed] [Google Scholar]
- 40.Bröer A, et al. Biochem J. 2000;346:705–710. Pt 3 [PMID: 10698697 ] [PMC free article] [PubMed] [Google Scholar]
- 41.Colleoni S, et al. J Pharmacol Exp Ther. 2008;326:646–656. doi: 10.1124/jpet.107.135251. [PMID: 18451317 ] [DOI] [PubMed] [Google Scholar]
- 42.Colton CK, et al. J Biomol Screen. 2010;15:653–662. doi: 10.1177/1087057110370998. [PMID: 20508255 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Coon TR, et al. 2004. ) Abstract Viewer/Itinerary Planner, Program No. 168.10. Society for Neuroscience.
- 44.Dunlop J. Curr Opin Pharmacol. 2006;6:103–107. doi: 10.1016/j.coph.2005.09.004. [PMID: 16368269 ] [DOI] [PubMed] [Google Scholar]
- 45.Dunlop J, et al. Br J Pharmacol. 2003;140:839–846. doi: 10.1038/sj.bjp.0705509. [PMID: 14517179 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Dunlop J, et al. Mol Pharmacol. 2005;68:974–982. doi: 10.1124/mol.105.012005. [PMID: 16014807 ] [DOI] [PubMed] [Google Scholar]
- 47.Eliasof S, et al. J Neurochem. 2001;77:550–557. doi: 10.1046/j.1471-4159.2001.00253.x. [PMID: 11299317 ] [DOI] [PubMed] [Google Scholar]
- 48.Esslinger CS, et al. Neuropharmacology. 2005;49:850–861. doi: 10.1016/j.neuropharm.2005.08.009. [PMID: 16183084 ] [DOI] [PubMed] [Google Scholar]
- 49.Esslinger CS, et al. Bioorg Med Chem. 2005;13:1111–1118. doi: 10.1016/j.bmc.2004.11.028. [PMID: 15670919 ] [DOI] [PubMed] [Google Scholar]
- 50.Fontana AC, et al. Mol Pharmacol. 2007;72:1228–1237. doi: 10.1124/mol.107.037127. [PMID: 17646426 ] [DOI] [PubMed] [Google Scholar]
- 51.Fontana AC, et al. Br J Pharmacol. 2003;139:1297–1309. doi: 10.1038/sj.bjp.0705352. [PMID: 12890709 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Gameiro A, et al. Biophys J. 2011;100:2623–2632. doi: 10.1016/j.bpj.2011.04.034. [PMID: 21641307 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Ganel R, et al. Neurobiol Dis. 2006;21:556–567. doi: 10.1016/j.nbd.2005.08.014. [PMID: 16274998 ] [DOI] [PubMed] [Google Scholar]
- 54.Gebhardt FM, et al. J Biol Chem. 2010;285:31313–31324. doi: 10.1074/jbc.M110.153494. [PMID: 20688910 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Gendreau S, et al. J Biol Chem. 2004;279:39505–39512. doi: 10.1074/jbc.M408038200. [PMID: 15265858 ] [DOI] [PubMed] [Google Scholar]
- 56.Goursaud S, et al. FASEB J. 2011;25:3674–3686. doi: 10.1096/fj.11-182337. [PMID: 21730107 ] [DOI] [PubMed] [Google Scholar]
- 57.Grewer C, et al. Biochemistry. 2005;44:11913–11923. doi: 10.1021/bi050987n. [PMID: 16128593 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Grewer C, Grabsch E. J Physiol (Lond) 2004;557:747–759. doi: 10.1113/jphysiol.2004.062521. (Pt 3):. [PMID: 15107471 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Grewer C, Rauen T. J Membr Biol. 2005;203:1–20. doi: 10.1007/s00232-004-0731-6. [PMID: 15834685 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Grunewald M, Kanner BI. J Biol Chem. 2000;275:9684–9689. doi: 10.1074/jbc.275.13.9684. [PMID: 10734120 ] [DOI] [PubMed] [Google Scholar]
- 61.Huang S, et al. J Biol Chem. 2009;284:4510–4515. doi: 10.1074/jbc.M808495200. [PMID: 19074430 ] [DOI] [PubMed] [Google Scholar]
- 62.Jensen AA, et al. J Med Chem. 2009;52:912–915. doi: 10.1021/jm8013458. [PMID: 19161278 ] [DOI] [PubMed] [Google Scholar]
- 63.Jiang J, Amara SG. Neuropharmacology. 2011;60:172–181. doi: 10.1016/j.neuropharm.2010.07.019. [PMID: 20708631 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Kanai Y, Hediger MA. Eur J Pharmacol. 2003;479:237–247. doi: 10.1016/j.ejphar.2003.08.073. [PMID: 14612154 ] [DOI] [PubMed] [Google Scholar]
- 65.Kanai Y, Hediger MA. Pflugers Arch. 2004;447:469–479. doi: 10.1007/s00424-003-1146-4. [PMID: 14530974 ] [DOI] [PubMed] [Google Scholar]
- 66.Kim K, et al. J Cell Physiol. 2011;226:2484–2493. doi: 10.1002/jcp.22609. [PMID: 21792905 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Koch HP, et al. J Neurosci. 2007;27:2943–2947. doi: 10.1523/JNEUROSCI.0118-07.2007. [PMID: 17360917 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Lau CL, et al. Br J Pharmacol. 2011;163:533–545. doi: 10.1111/j.1476-5381.2011.01259.x. [PMID: 21309758 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Leary GP, et al. J Neurosci. 2007;27:2938–2942. doi: 10.1523/JNEUROSCI.4851-06.2007. [PMID: 17360916 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Lee A, Pow DV. Int J Biochem Cell Biol. 2010;42:1901–1906. doi: 10.1016/j.biocel.2010.09.016. [PMID: 20883814 ] [DOI] [PubMed] [Google Scholar]
- 71.Lee SG, et al. J Biol Chem. 2008;283:13116–13123. doi: 10.1074/jbc.M707697200. [PMID: 18326497 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Levy LM, et al. J Neurosci. 1998;18:9620–9628. doi: 10.1523/JNEUROSCI.18-23-09620.1998. [PMID: 9822723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Machtens JP, et al. J Biol Chem. 2011;286:23780–23788. doi: 10.1074/jbc.M110.207514. [PMID: 21572047 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Nothmann D, et al. J Biol Chem. 2011;286:3935–3943. doi: 10.1074/jbc.M110.187492. [PMID: 21127051 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Oppedisano F, et al. Biochem Pharmacol. 2010;80:1266–1273. doi: 10.1016/j.bcp.2010.06.032. [PMID: 20599776 ] [DOI] [PubMed] [Google Scholar]
- 76.Palacín M, et al. Physiol Rev. 1998;78:969–1054. doi: 10.1152/physrev.1998.78.4.969. [PMID: 9790568 ] [DOI] [PubMed] [Google Scholar]
- 77.Pinilla-Tenas J, et al. J Membr Biol. 2003;195:27–32. doi: 10.1007/s00232-003-2041-9. [PMID: 14502423 ] [DOI] [PubMed] [Google Scholar]
- 78.Reyes N, et al. Nature. 2009;462:880–885. doi: 10.1038/nature08616. [PMID: 19924125 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Romera C, et al. J Cereb Blood Flow Metab. 2007;27:1327–1338. doi: 10.1038/sj.jcbfm.9600438. [PMID: 17213861 ] [DOI] [PubMed] [Google Scholar]
- 80.Rose EM, et al. J Neurosci. 2009;29:8143–8155. doi: 10.1523/JNEUROSCI.1081-09.2009. [PMID: 19553454 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Rothstein JD, et al. Nature. 2005;433:73–77. doi: 10.1038/nature03180. [PMID: 15635412 ] [DOI] [PubMed] [Google Scholar]
- 82.Ryan RM, Mindell JA. Nat Struct Mol Biol. 2007;14:365–371. doi: 10.1038/nsmb1230. [PMID: 17435767 ] [DOI] [PubMed] [Google Scholar]
- 83.Ryan RM, et al. J Biol Chem. 2004;279:20742–20751. doi: 10.1074/jbc.M304433200. [PMID: 14982939 ] [DOI] [PubMed] [Google Scholar]
- 84.Shigeri Y, et al. J Neurochem. 2001;79:297–302. doi: 10.1046/j.1471-4159.2001.00588.x. [PMID: 11677257 ] [DOI] [PubMed] [Google Scholar]
- 85.Shimamoto K, et al. Mol Pharmacol. 1998;53:195–201. doi: 10.1124/mol.53.2.195. [PMID: 9463476 ] [DOI] [PubMed] [Google Scholar]
- 86.Shimamoto K, et al. Mol Pharmacol. 2007;71:294–302. doi: 10.1124/mol.106.027250. [PMID: 17047096 ] [DOI] [PubMed] [Google Scholar]
- 87.Tamarappoo BK, et al. Biochim Biophys Acta. 1996;1279:131–136. doi: 10.1016/0005-2736(95)00259-6. [PMID: 8603078 ] [DOI] [PubMed] [Google Scholar]
- 88.Torres-Salazar D, Fahlke C. J Biol Chem. 2007;282:34719–34726. doi: 10.1074/jbc.M704118200. [PMID: 17908688 ] [DOI] [PubMed] [Google Scholar]
- 89.Utsunomiya-Tate N, et al. J Biol Chem. 1996;271:14883–14890. doi: 10.1074/jbc.271.25.14883. [PMID: 8662767 ] [DOI] [PubMed] [Google Scholar]
- 90.Vandenberg RJ, et al. Eur J Pharm Sci. 2004;23:1–11. doi: 10.1016/j.ejps.2004.05.006. [PMID: 15324920 ] [DOI] [PubMed] [Google Scholar]
- 91.Vandenberg RJ, et al. Mol Pharmacol. 1997;51:809–815. doi: 10.1124/mol.51.5.809. [PMID: 9145919 ] [DOI] [PubMed] [Google Scholar]
- 92.Veruki ML, et al. Nat Neurosci. 2006;9:1388–1396. doi: 10.1038/nn1793. [PMID: 17041592 ] [DOI] [PubMed] [Google Scholar]
- 93.Yernool D, et al. Nature. 2004;431:811–818. doi: 10.1038/nature03018. [PMID: 15483603 ] [DOI] [PubMed] [Google Scholar]
- 94.Zerangue N, Kavanaugh MP. J Physiol (Lond) 1996;493:419–423. doi: 10.1113/jphysiol.1996.sp021393. ( Pt 2)[PMID: 8782106 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Zerangue N, Kavanaugh MP. Nature. 1996;383:634–637. doi: 10.1038/383634a0. [PMID: 8857541 ] [DOI] [PubMed] [Google Scholar]
- 96.Zerangue N, Kavanaugh MP. J Biol Chem. 1996;271:27991–27994. doi: 10.1074/jbc.271.45.27991. [PMID: 8910405 ] [DOI] [PubMed] [Google Scholar]
- 97.Zhou LM, et al. J Pharmacol Exp Ther. 1997;280:422–427. [PMID: 8996224 ] [PubMed] [Google Scholar]
- 98.Zou S, et al. J Neurochem. 2011;117:833–840. doi: 10.1111/j.1471-4159.2011.07250.x. [PMID: 21426345 ] [DOI] [PubMed] [Google Scholar]
- 99.Bianchi J, Rose RC. Proc Soc Exp Biol Med. 1986;181:333–337. doi: 10.3181/00379727-181-42261. [PMID: 3945643 ] [DOI] [PubMed] [Google Scholar]
- 100.Di Daniel E, et al. BMC Cell Biol. 2009;10:54–PMID. doi: 10.1186/1471-2121-10-54. 19607714 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Ibberson M, et al. J Biol Chem. 2000;275:4607–4612. doi: 10.1074/jbc.275.7.4607. [PMID: 10671487 ] [DOI] [PubMed] [Google Scholar]
- 102.Lee YC, et al. Hum Mol Genet. 2010;19:3721–3733. doi: 10.1093/hmg/ddq286. [PMID: 20639396 ] [DOI] [PubMed] [Google Scholar]
- 103.Rogers S, et al. Biochem Biophys Res Commun. 2003;308:422–426. doi: 10.1016/s0006-291x(03)01417-7. [PMID: 12914765 ] [DOI] [PubMed] [Google Scholar]
- 104.Uldry M, et al. FEBS Lett. 2002;524:199–203. doi: 10.1016/s0014-5793(02)03058-2. [PMID: 12135767 ] [DOI] [PubMed] [Google Scholar]
- 105.Wu X, Freeze HH. Genomics. 2002;80:553–557. doi: 10.1006/geno.2002.7010. [PMID: 12504846 ] [DOI] [PubMed] [Google Scholar]
- 106.Wolf S, et al. Biochem J. 2002;364:767–775. doi: 10.1042/BJ20020084. (Pt 3):. [PMID: 12049641 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Abramson J, Wright EM. Curr Opin Struct Biol. 2009;19:425–432. doi: 10.1016/j.sbi.2009.06.002. [PMID: 19631523 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Aouameur R, et al. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1300–G1307. doi: 10.1152/ajpgi.00422.2007. [PMID: 17932225 ] [DOI] [PubMed] [Google Scholar]
- 109.Apparsundaram S, et al. Biochem Biophys Res Commun. 2000;276:862–867. doi: 10.1006/bbrc.2000.3561. [PMID: 11027560 ] [DOI] [PubMed] [Google Scholar]
- 110.Bissonnette P, et al. J Physiol (Lond) 2004;558:759–768. doi: 10.1113/jphysiol.2004.064311. (Pt 3):. [PMID: 15181167 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Bizhanova A, Kopp P. Endocrinology. 2009;150:1084–1090. doi: 10.1210/en.2008-1437. [PMID: 19196800 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Bourgeois F, et al. J Physiol (Lond) 2005;563:333–343. doi: 10.1113/jphysiol.2004.076679. (Pt 2):. [PMID: 15613375 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Chao EC, Henry RR. Nat Rev Drug Discov. 2010;9:551–559. doi: 10.1038/nrd3180. [PMID: 20508640 ] [DOI] [PubMed] [Google Scholar]
- 114.Coady MJ, et al. Biophys J. 2007;93:2325–2331. doi: 10.1529/biophysj.107.108555. [PMID: 17526579 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Coady MJ, et al. J Biol Chem. 2002;277:35219–35224. doi: 10.1074/jbc.M204321200. [PMID: 12133831 ] [DOI] [PubMed] [Google Scholar]
- 116.de Carvalho FD, Quick M. J Biol Chem. 2011;286:131–137. doi: 10.1074/jbc.M110.167197. [PMID: 20980265 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Diez-Sampedro A, et al. Proc Natl Acad Sci USA. 2003;100:11753–11758. doi: 10.1073/pnas.1733027100. [PMID: 13130073 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Dohán O, et al. Proc Natl Acad Sci USA. 2007;104:20250–20255. doi: 10.1073/pnas.0707207104. [PMID: 18077370 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Eskandari S, et al. J Biol Chem. 1997;272:27230–27238. doi: 10.1074/jbc.272.43.27230. [PMID: 9341168 ] [DOI] [PubMed] [Google Scholar]
- 120.Ferguson SM, et al. Proc Natl Acad Sci USA. 2004;101:8762–8767. doi: 10.1073/pnas.0401667101. [PMID: 15173594 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Ferguson SM, Blakely RD. Mol Interv. 2004;4:22–37. doi: 10.1124/mi.4.1.22. [PMID: 14993474 ] [DOI] [PubMed] [Google Scholar]
- 122.Ganapathy V, et al. AAPS J. 2008;10:193–199. doi: 10.1208/s12248-008-9022-y. [PMID: 18446519 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Ganapathy V, et al. Pharmacol Ther. 2009;121:29–40. doi: 10.1016/j.pharmthera.2008.09.005. [PMID: 18992769 ] [DOI] [PubMed] [Google Scholar]
- 124.Gopal E, et al. Biochem J. 2005;388:309–316. doi: 10.1042/BJ20041916. (Pt 1):. [PMID: 15651982 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Gupta N, et al. Life Sci. 2006;78:2419–2425. doi: 10.1016/j.lfs.2005.10.028. [PMID: 16375929 ] [DOI] [PubMed] [Google Scholar]
- 126.Hager K, et al. J Membr Biol. 1995;143:103–113. doi: 10.1007/BF00234656. [PMID: 7537337 ] [DOI] [PubMed] [Google Scholar]
- 127.Hummel CS, et al. Am J Physiol, Cell Physiol. 2011;300:C14–C21. doi: 10.1152/ajpcell.00388.2010. [PMID: 20980548 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Iwamoto H, et al. J Neurosci. 2006;26:9851–9859. doi: 10.1523/JNEUROSCI.1862-06.2006. [PMID: 17005849 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Kanai Y, et al. J Clin Invest. 1994;93:397–404. doi: 10.1172/JCI116972. [PMID: 8282810 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Krishnaswamy A, Cooper E. Neuron. 2009;61:272–286. doi: 10.1016/j.neuron.2008.11.025. [PMID: 19186169 ] [DOI] [PubMed] [Google Scholar]
- 131.Lin X, et al. Arch Biochem Biophys. 2009;481:197–201. doi: 10.1016/j.abb.2008.11.008. [PMID: 19032932 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Miyauchi S, et al. J Biol Chem. 2004;279:13293–13296. doi: 10.1074/jbc.C400059200. [PMID: 14966140 ] [DOI] [PubMed] [Google Scholar]
- 133.Okuda T, Haga T. FEBS Lett. 2000;484:92–97. doi: 10.1016/s0014-5793(00)02134-7. [PMID: 11068039 ] [DOI] [PubMed] [Google Scholar]
- 134.Prasad PD, et al. Biochem Biophys Res Commun. 2000;270:836–840. doi: 10.1006/bbrc.2000.2498. [PMID: 10772912 ] [DOI] [PubMed] [Google Scholar]
- 135.Said HM. J Nutr. 2009;139:158–162. doi: 10.3945/jn.108.092023. [PMID: 19056639 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Said HM, et al. Am J Clin Nutr. 1989;49:127–131. doi: 10.1093/ajcn/49.1.127. [PMID: 2911998 ] [DOI] [PubMed] [Google Scholar]
- 137.Singh N, et al. J Biol Chem. 2010;285:27601–27608. doi: 10.1074/jbc.M110.102947. [PMID: 20601425 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Thangaraju M, et al. J Biol Chem. 2006;281:26769–26773. doi: 10.1074/jbc.C600189200. [PMID: 16873376 ] [DOI] [PubMed] [Google Scholar]
- 139.Thangaraju M, et al. Cancer Res. 2006;66:11560–11564. doi: 10.1158/0008-5472.CAN-06-1950. [PMID: 17178845 ] [DOI] [PubMed] [Google Scholar]
- 140.Traiffort E, et al. J Neurochem. 2005;92:1116–1125. doi: 10.1111/j.1471-4159.2004.02962.x. [PMID: 15715662 ] [DOI] [PubMed] [Google Scholar]
- 141.Wang H, et al. J Biol Chem. 1999;274:14875–14883. doi: 10.1074/jbc.274.21.14875. [PMID: 10329687 ] [DOI] [PubMed] [Google Scholar]
- 142.Wright EM, et al. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID: 21527736 ] [DOI] [PubMed] [Google Scholar]
- 143.Wright EM, Turk E. Pflugers Arch. 2004;447:510–518. doi: 10.1007/s00424-003-1063-6. [PMID: 12748858 ] [DOI] [PubMed] [Google Scholar]
- 144.Anderson CM, et al. J Physiol (Lond) 2008;586:4061–4067. doi: 10.1113/jphysiol.2008.154500. (Pt 17):. [PMID: 18599538 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Anderson CM, et al. J Physiol (Lond) 2009;587:731–744. doi: 10.1113/jphysiol.2008.164228. (Pt 4):. [PMID: 19074966 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Aubrey KR, et al. Mol Pharmacol. 2000;58:129–135. doi: 10.1124/mol.58.1.129. [PMID: 10860934 ] [DOI] [PubMed] [Google Scholar]
- 147.Bergeron R, et al. Proc Natl Acad Sci USA. 1998;95:15730–15734. doi: 10.1073/pnas.95.26.15730. [PMID: 9861038 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Betz H, et al. Biochem Soc Trans. 2006;34:55–58. doi: 10.1042/BST0340055. (Pt 1):. [PMID: 16417482 ] [DOI] [PubMed] [Google Scholar]
- 149.Brown A, et al. Bioorg Med Chem Lett. 2001;11:2007–2009. doi: 10.1016/s0960-894x(01)00355-9. [PMID: 11454468 ] [DOI] [PubMed] [Google Scholar]
- 150.Bröer A, et al. Mol Membr Biol. 2009;26:333–346. doi: 10.1080/09687680903150027. [PMID: 19657969 ] [DOI] [PubMed] [Google Scholar]
- 151.Bröer A, et al. Biochem J. 2006;393:421–430. doi: 10.1042/BJ20051273. (Pt 1):. [PMID: 16185194 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Bröer S. Neurochem Int. 2006;48:559–567. doi: 10.1016/j.neuint.2005.11.021. [PMID: 16540203 ] [DOI] [PubMed] [Google Scholar]
- 153.Bröer S. Physiology (Bethesda) 2008;23:95–103. doi: 10.1152/physiol.00045.2007. [PMID: 18400692 ] [DOI] [PubMed] [Google Scholar]
- 154.Böhmer C, et al. Biochem J. 2005;389:745–751. doi: 10.1042/BJ20050083. (Pt 3):. [PMID: 15804236 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Carland JE, et al. Br J Pharmacol. 2013;168:891–902. doi: 10.1111/j.1476-5381.2012.02213.x. [PMID: 22978602 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Chen NH, et al. Pflugers Arch. 2004;447:519–531. doi: 10.1007/s00424-003-1064-5. [PMID: 12719981 ] [DOI] [PubMed] [Google Scholar]
- 157.Clausen RP, et al. Adv Pharmacol. 2006;54:265–284. doi: 10.1016/s1054-3589(06)54011-6. [PMID: 17175818 ] [DOI] [PubMed] [Google Scholar]
- 158.Cohen-Kfir E, et al. Proc Natl Acad Sci USA. 2005;102:6154–6159. doi: 10.1073/pnas.0501431102. [PMID: 15829583 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Dai W, et al. Arch Biochem Biophys. 1999;361:75–84. doi: 10.1006/abbi.1998.0959. [PMID: 9882430 ] [DOI] [PubMed] [Google Scholar]
- 160.Dhar TG, et al. J Med Chem. 1994;37:2334–2342. doi: 10.1021/jm00041a012. [PMID: 8057281 ] [DOI] [PubMed] [Google Scholar]
- 161.Dodd JR, Christie DL. J Biol Chem. 2007;282:15528–15533. doi: 10.1074/jbc.M611705200. [PMID: 17400549 ] [DOI] [PubMed] [Google Scholar]
- 162.Edington AR, et al. J Biol Chem. 2009;284:36424–36430. doi: 10.1074/jbc.M109.017509. [PMID: 19875446 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Eulenburg V, et al. Trends Biochem Sci. 2005;30:325–333. doi: 10.1016/j.tibs.2005.04.004. [PMID: 15950877 ] [DOI] [PubMed] [Google Scholar]
- 164.Forrest LR, Rudnick G. Physiology (Bethesda) 2009;24:377–386. doi: 10.1152/physiol.00030.2009. [PMID: 19996368 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Fülep GH, et al. Eur J Med Chem. 2006;41:809–824. doi: 10.1016/j.ejmech.2006.01.019. [PMID: 16766089 ] [DOI] [PubMed] [Google Scholar]
- 166.Gabernet L, et al. Neurosci Lett. 2005;373:79–84. doi: 10.1016/j.neulet.2004.09.064. [PMID: 15555781 ] [DOI] [PubMed] [Google Scholar]
- 167.Gomeza J, et al. Handb Exp Pharmacol. 2006;175:457–483. doi: 10.1007/3-540-29784-7_19. [PMID: 16722246 ] [DOI] [PubMed] [Google Scholar]
- 168.Gomeza J, et al. Neuron. 2003;40:785–796. doi: 10.1016/s0896-6273(03)00672-x. [PMID: 14622582 ] [DOI] [PubMed] [Google Scholar]
- 169.Gomeza J, et al. Neuron. 2003;40:797–806. doi: 10.1016/s0896-6273(03)00673-1. [PMID: 14622583 ] [DOI] [PubMed] [Google Scholar]
- 170.Gu H, et al. J Biol Chem. 1994;269:7124–7130. [PMID: 8125921 ] [PubMed] [Google Scholar]
- 171.Gu HH, et al. J Biol Chem. 1996;271:6911–6916. doi: 10.1074/jbc.271.12.6911. [PMID: 8636118 ] [DOI] [PubMed] [Google Scholar]
- 172.Han X, et al. Acta Physiol (Oxf) 2006;187:61–73. doi: 10.1111/j.1748-1716.2006.01573.x. [PMID: 16734743 ] [DOI] [PubMed] [Google Scholar]
- 173.Harvey RJ, et al. Trends Genet. 2008;24:439–447. doi: 10.1016/j.tig.2008.06.005. [PMID: 18707791 ] [DOI] [PubMed] [Google Scholar]
- 174.Hatanaka T, et al. J Clin Invest. 2001;107:1035–1043. doi: 10.1172/JCI12060. [PMID: 11306607 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Jeong HJ, et al. Br J Pharmacol. 2010;161:925–935. doi: 10.1111/j.1476-5381.2010.00935.x. [PMID: 20860669 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Ju P, et al. J Biol Chem. 2004;279:22983–22991. doi: 10.1074/jbc.M312484200. [PMID: 15031290 ] [DOI] [PubMed] [Google Scholar]
- 177.Karunakaran S, et al. Biochem J. 2008;414:343–355. doi: 10.1042/BJ20080622. [PMID: 18522536 ] [DOI] [PubMed] [Google Scholar]
- 178.Knutsen LJ, et al. J Med Chem. 1999;42:3447–3462. doi: 10.1021/jm981027k. [PMID: 10479278 ] [DOI] [PubMed] [Google Scholar]
- 179.Kristensen AS, et al. Pharmacol Rev. 2011;63:585–640. doi: 10.1124/pr.108.000869. [PMID: 21752877 ] [DOI] [PubMed] [Google Scholar]
- 180.Kvist T, et al. Comb Chem High Throughput Screen. 2009;12:241–249. doi: 10.2174/138620709787581684. [PMID: 19275529 ] [DOI] [PubMed] [Google Scholar]
- 181.Madsen KK, et al. Pharmacol Ther. 2010;125:394–401. doi: 10.1016/j.pharmthera.2009.11.007. [PMID: 20026354 ] [DOI] [PubMed] [Google Scholar]
- 182.Mallorga PJ, et al. Neuropharmacology. 2003;45:585–593. doi: 10.1016/s0028-3908(03)00227-2. [PMID: 12941372 ] [DOI] [PubMed] [Google Scholar]
- 183.Mezler M, et al. Mol Pharmacol. 2008;74:1705–1715. doi: 10.1124/mol.108.049312. [PMID: 18815213 ] [DOI] [PubMed] [Google Scholar]
- 184.Núñez E, et al. Br J Pharmacol. 2000;129:200–206. doi: 10.1038/sj.bjp.0703049. [PMID: 10694221 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Pearlman RJ, et al. J Neurochem. 2003;84:592–601. doi: 10.1046/j.1471-4159.2003.01549.x. [PMID: 12558979 ] [DOI] [PubMed] [Google Scholar]
- 186.Pristupa ZB, et al. Mol Pharmacol. 1994;45:125–135. [PMID: 8302271 ] [PubMed] [Google Scholar]
- 187.Pérez-Siles G, et al. J Neurochem. 2011;118:195–204. doi: 10.1111/j.1471-4159.2011.07309.x. [PMID: 21574997 ] [DOI] [PubMed] [Google Scholar]
- 188.Rousseau F, et al. J Neurosci. 2008;28:9755–9768. doi: 10.1523/JNEUROSCI.0509-08.2008. [PMID: 18815261 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Saier MH, et al. Nucleic Acids Res. 2009;37:Database issue. doi: 10.1093/nar/gkn862. ): D274–D278. [PMID: 19022853 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Schousboe A, et al. Future Med Chem. 2011;3:183–187. doi: 10.4155/fmc.10.288. [PMID: 21428813 ] [DOI] [PubMed] [Google Scholar]
- 191.Schousboe A, et al. Biochem Pharmacol. 2004;68:1557–1563. doi: 10.1016/j.bcp.2004.06.041. [PMID: 15451399 ] [DOI] [PubMed] [Google Scholar]
- 192.Semyanov A, et al. Trends Neurosci. 2004;27:262–269. doi: 10.1016/j.tins.2004.03.005. [PMID: 15111008 ] [DOI] [PubMed] [Google Scholar]
- 193.Singer D, et al. J Biol Chem. 2009;284:19953–19960. doi: 10.1074/jbc.M109.011171. [PMID: 19478081 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.Singh SK, et al. Nature. 2007;448:952–956. doi: 10.1038/nature06038. [PMID: 17687333 ] [DOI] [PubMed] [Google Scholar]
- 195.Sloan JL, Mager S. J Biol Chem. 1999;274:23740–23745. doi: 10.1074/jbc.274.34.23740. [PMID: 10446133 ] [DOI] [PubMed] [Google Scholar]
- 196.Supplisson S, Roux MJ. FEBS Lett. 2002;529:93–101. doi: 10.1016/s0014-5793(02)03251-9. [PMID: 12354619 ] [DOI] [PubMed] [Google Scholar]
- 197.Talvenheimo J, et al. J Biol Chem. 1983;258:6115–6119. [PMID: 6853478 ] [PubMed] [Google Scholar]
- 198.Tatsumi M, et al. Eur J Pharmacol. 1997;340:249–258. doi: 10.1016/s0014-2999(97)01393-9. [PMID: 9537821 ] [DOI] [PubMed] [Google Scholar]
- 199.Tsai G, et al. Proc Natl Acad Sci USA. 2004;101:8485–8490. doi: 10.1073/pnas.0402662101. [PMID: 15159536 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Umapathy NS, et al. Pharm Res. 2004;21:1303–1310. doi: 10.1023/b:pham.0000033019.49737.28. [PMID: 15290873 ] [DOI] [PubMed] [Google Scholar]
- 201.Vandenberg RJ, et al. Eur J Pharm Sci. 2004;23:1–11. doi: 10.1016/j.ejps.2004.05.006. [PMID: 15324920 ] [DOI] [PubMed] [Google Scholar]
- 202.Vandenberg RJ, et al. J Biol Chem. 2007;282:14447–14453. doi: 10.1074/jbc.M609158200. [PMID: 17383967 ] [DOI] [PubMed] [Google Scholar]
- 203.Vanslambrouck JM, et al. Biochem J. 2010;428:397–407. doi: 10.1042/BJ20091667. [PMID: 20377526 ] [DOI] [PubMed] [Google Scholar]
- 204.Wiles AL, et al. J Neurochem. 2006;99:781–786. doi: 10.1111/j.1471-4159.2006.04107.x. [PMID: 16899062 ] [DOI] [PubMed] [Google Scholar]
- 205.Wong EH, et al. Biol Psychiatry. 2000;47:818–829. doi: 10.1016/s0006-3223(99)00291-7. [PMID: 10812041 ] [DOI] [PubMed] [Google Scholar]
- 206.Yamashita A, et al. Nature. 2005;437:215–223. doi: 10.1038/nature03978. [PMID: 16041361 ] [DOI] [PubMed] [Google Scholar]
- 207.Yee BK, et al. J Neurosci. 2006;26:3169–3181. doi: 10.1523/JNEUROSCI.5120-05.2006. [PMID: 16554468 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Yu XC, et al. Neurosci Lett. 2009;451:212–216. doi: 10.1016/j.neulet.2009.01.018. [PMID: 19159658 ] [DOI] [PubMed] [Google Scholar]
- 209.Zaia KA, Reimer RJ. J Biol Chem. 2009;284:8439–8448. doi: 10.1074/jbc.M806407200. [PMID: 19147495 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Zhang HX, et al. J Physiol (Lond) 2009;587:3207–3220. doi: 10.1113/jphysiol.2009.168757. (Pt 13):. [PMID: 19433577 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Dong H, et al. Biophys J. 2002;82:1943–1952. doi: 10.1016/S0006-3495(02)75543-4. [PMID: 11916852 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212.Jost N, et al. Br J Pharmacol. 2013 doi: 10.1111/bph.12228. [Epub ahead of print]. [PMID: 23647096 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Counillon L, et al. Mol Pharmacol. 1993;44:1041–1045. [PMID: 8246907 ] [PubMed] [Google Scholar]
- 214.Lee SH, et al. Biochem Biophys Res Commun. 2008;369:320–326. doi: 10.1016/j.bbrc.2008.01.168. [PMID: 18269914 ] [DOI] [PubMed] [Google Scholar]
- 215.Miyazaki E, et al. J Biol Chem. 2001;276:49221–49227. doi: 10.1074/jbc.M106267200. [PMID: 11641397 ] [DOI] [PubMed] [Google Scholar]
- 216.Nakamura N, et al. J Biol Chem. 2005;280:1561–1572. doi: 10.1074/jbc.M410041200. [PMID: 15522866 ] [DOI] [PubMed] [Google Scholar]
- 217.Numata M, Orlowski J. J Biol Chem. 2001;276:17387–17394. doi: 10.1074/jbc.M101319200. [PMID: 11279194 ] [DOI] [PubMed] [Google Scholar]
- 218.Tse CM, et al. Proc Natl Acad Sci USA. 1993;90:9110–9114. doi: 10.1073/pnas.90.19.9110. [PMID: 8415663 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Tse CM, et al. J Biol Chem. 1993;268:11917–11924. [PMID: 7685025 ] [PubMed] [Google Scholar]
- 220.Wang D, et al. Nat Cell Biol. 2003;5:1117–1122. doi: 10.1038/ncb1072. [PMID: 14634667 ] [DOI] [PubMed] [Google Scholar]
- 221.Banerjee A, Swaan PW. Biochemistry. 2006;45:943–953. doi: 10.1021/bi052202j. [PMID: 16411770 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Bhat BG, et al. J Lipid Res. 2003;44:1614–1621. doi: 10.1194/jlr.M200469-JLR200. [PMID: 12810816 ] [DOI] [PubMed] [Google Scholar]
- 223.Burger S, et al. Neuroscience. 2011;193:109–121. doi: 10.1016/j.neuroscience.2011.06.068. [PMID: 21742018 ] [DOI] [PubMed] [Google Scholar]
- 224.Craddock AL, et al. Am J Physiol. 1998;274(1):G157–G169. doi: 10.1152/ajpgi.1998.274.1.G157. Pt 1):. [PMID: 9458785 ] [DOI] [PubMed] [Google Scholar]
- 225.Dawson PA, et al. J Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. [PMID: 19498215 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Dong Z, et al. Mol Pharm. 2013;10:1008–1019. doi: 10.1021/mp300453k. [PMID: 23339484 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Fernandes CF, et al. Biochem Biophys Res Commun. 2007;361:26–32. doi: 10.1016/j.bbrc.2007.06.160. [PMID: 17632081 ] [DOI] [PubMed] [Google Scholar]
- 228.Geyer J, et al. J Biol Chem. 2007;282:19728–19741. doi: 10.1074/jbc.M702663200. [PMID: 17491011 ] [DOI] [PubMed] [Google Scholar]
- 229.Geyer J, et al. Neuroscience. 2008;152:990–1005. doi: 10.1016/j.neuroscience.2008.01.049. [PMID: 18355966 ] [DOI] [PubMed] [Google Scholar]
- 230.Geyer J, et al. Biochem Biophys Res Commun. 2004;316:300–306. doi: 10.1016/j.bbrc.2004.02.048. [PMID: 15020217 ] [DOI] [PubMed] [Google Scholar]
- 231.Godoy JR, et al. Eur J Cell Biol. 2007;86:445–460. doi: 10.1016/j.ejcb.2007.06.001. [PMID: 17628207 ] [DOI] [PubMed] [Google Scholar]
- 232.Hallén S, et al. Biochemistry. 1999;38:11379–11388. doi: 10.1021/bi990554i. [PMID: 10471288 ] [DOI] [PubMed] [Google Scholar]
- 233.Kim RB, et al. J Pharmacol Exp Ther. 1999;291:1204–1209. [PMID: 10565843 ] [PubMed] [Google Scholar]
- 234.Klaassen CD, Aleksunes LM. Pharmacol Rev. 2010;62:1–96. doi: 10.1124/pr.109.002014. [PMID: 20103563 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 235.Meier PJ, et al. Hepatology. 1997;26:1667–1677. doi: 10.1002/hep.510260641. [PMID: 9398014 ] [DOI] [PubMed] [Google Scholar]
- 236.Tollefson MB, et al. Bioorg Med Chem Lett. 2003;13:3727–3730. doi: 10.1016/j.bmcl.2003.08.004. [PMID: 14552767 ] [DOI] [PubMed] [Google Scholar]
- 237.Visser WE, et al. Mol Cell Endocrinol. 2010;315:138–145. doi: 10.1016/j.mce.2009.08.003. [PMID: 19682536 ] [DOI] [PubMed] [Google Scholar]
- 238.Weinman SA, et al. J Biol Chem. 1998;273:34691–34695. doi: 10.1074/jbc.273.52.34691. [PMID: 9856990 ] [DOI] [PubMed] [Google Scholar]
- 239.Wu Y, et al. J Med Chem. 2013;56:5094–5114. doi: 10.1021/jm400459m. [PMID: 23678871 ] [DOI] [PubMed] [Google Scholar]
- 240.Gunshin H, et al. Nature. 1997;388:482–488. doi: 10.1038/41343. [PMID: 9242408 ] [DOI] [PubMed] [Google Scholar]
- 241.Delpire E, et al. Proc Natl Acad Sci USA. 2009;106:5383–5388. doi: 10.1073/pnas.0812756106. [PMID: 19279215 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Hannaert P, et al. Naunyn Schmiedebergs Arch Pharmacol. 2002;365:193–199. doi: 10.1007/s00210-001-0521-y. [PMID: 11882915 ] [DOI] [PubMed] [Google Scholar]
- 243.Ito Y, et al. Eur J Pharmacol. 2001;426:175–178. doi: 10.1016/s0014-2999(01)01106-2. [PMID: 11527541 ] [DOI] [PubMed] [Google Scholar]
- 244.Maciver B, et al. Am J Physiol Renal Physiol. 2008;294:F956–F964. doi: 10.1152/ajprenal.00229.2007. [PMID: 18256317 ] [DOI] [PubMed] [Google Scholar]
- 245.Stewart G. Br J Pharmacol. 2011;164:1780–1792. doi: 10.1111/j.1476-5381.2011.01377.x. [PMID: 21449978 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Zhao D, et al. Biochim Biophys Acta. 2007;1768:1815–1821. doi: 10.1016/j.bbamem.2007.04.010. [PMID: 17506977 ] [DOI] [PubMed] [Google Scholar]
- 247.Bhardwaj RK, et al. Eur J Pharm Sci. 2006;27:533–542. doi: 10.1016/j.ejps.2005.09.014. [PMID: 16289537 ] [DOI] [PubMed] [Google Scholar]
- 248.Biegel A, et al. Amino Acids. 2006;31:137–156. doi: 10.1007/s00726-006-0331-0. [PMID: 16868651 ] [DOI] [PubMed] [Google Scholar]
- 249.Blasius AL, et al. Proc Natl Acad Sci USA. 2010;107:19973–19978. doi: 10.1073/pnas.1014051107. [PMID: 21045126 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Botka CW, et al. AAPS PharmSci. 2000;2:E16–PMID. doi: 10.1208/ps020216. 11741232 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Daniel H, Kottra G. Pflugers Arch. 2004;447:610–618. doi: 10.1007/s00424-003-1101-4. [PMID: 12905028 ] [DOI] [PubMed] [Google Scholar]
- 252.Darcel NP, et al. J Nutr. 2005;135:1491–1495. doi: 10.1093/jn/135.6.1491. [PMID: 15930458 ] [DOI] [PubMed] [Google Scholar]
- 253.Döring F, et al. J Clin Invest. 1998;101:2761–2767. doi: 10.1172/JCI1909. [PMID: 9637710 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254.Ganapathy ME, et al. J Biol Chem. 1995;270:25672–25677. doi: 10.1074/jbc.270.43.25672. [PMID: 7592745 ] [DOI] [PubMed] [Google Scholar]
- 255.Ganapathy ME, et al. Biochem Biophys Res Commun. 1998;246:470–475. doi: 10.1006/bbrc.1998.8628. [PMID: 9610386 ] [DOI] [PubMed] [Google Scholar]
- 256.Han H, et al. Pharm Res. 1998;15:1154–1159. doi: 10.1023/a:1011919319810. [PMID: 9706043 ] [DOI] [PubMed] [Google Scholar]
- 257.Herrera-Ruiz D, Knipp GT. J Pharm Sci. 2003;92:691–714. doi: 10.1002/jps.10303. [PMID: 12661057 ] [DOI] [PubMed] [Google Scholar]
- 258.Knütter I, et al. Biochemistry. 2001;40:4454–4458. doi: 10.1021/bi0026371. [PMID: 11284702 ] [DOI] [PubMed] [Google Scholar]
- 259.Lee J, et al. J Biol Chem. 2009;284:23818–23829. doi: 10.1074/jbc.M109.033670. [PMID: 19570976 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.Merlin D, et al. J Clin Invest. 1998;102:2011–2018. doi: 10.1172/JCI4179. [PMID: 9835627 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261.Newstead S, et al. EMBO J. 2011;30:417–426. doi: 10.1038/emboj.2010.309. [PMID: 21131908 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Romano A, et al. Mol Cell Endocrinol. 2010;315:174–181. doi: 10.1016/j.mce.2009.11.002. [PMID: 19913073 ] [DOI] [PubMed] [Google Scholar]
- 263.Rubio-Aliaga I, Daniel H. Xenobiotica. 2008;38:1022–1042. doi: 10.1080/00498250701875254. [PMID: 18668438 ] [DOI] [PubMed] [Google Scholar]
- 264.Sakata K, et al. Biochem J. 2001;356:53–60. doi: 10.1042/0264-6021:3560053. (Pt 1):. [PMID: 11336635 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.Sasawatari S, et al. Gastroenterology. 2011;140:1513–1525. doi: 10.1053/j.gastro.2011.01.041. [PMID: 21277849 ] [DOI] [PubMed] [Google Scholar]
- 266.Sun Y, et al. Mol Pharm. 2009;6:315–325. doi: 10.1021/mp800200a. [PMID: 19115956 ] [DOI] [PubMed] [Google Scholar]
- 267.Theis S, et al. Mol Pharmacol. 2002;61:214–221. doi: 10.1124/mol.61.1.214. [PMID: 11752223 ] [DOI] [PubMed] [Google Scholar]
- 268.Vavricka SR, et al. Gastroenterology. 2004;127:1401–1409. doi: 10.1053/j.gastro.2004.07.024. [PMID: 15521010 ] [DOI] [PubMed] [Google Scholar]
- 269.Watanabe K, et al. Biol Pharm Bull. 2002;25:885–890. doi: 10.1248/bpb.25.885. [PMID: 12132663 ] [DOI] [PubMed] [Google Scholar]
- 270.Friesema EC, et al. Mol Endocrinol. 2006;20:2761–2772. doi: 10.1210/me.2005-0256. [PMID: 16887882 ] [DOI] [PubMed] [Google Scholar]
- 271.Murakami Y, et al. Drug Metab Dispos. 2005;33:1845–1851. doi: 10.1124/dmd.105.005264. [PMID: 16174808 ] [DOI] [PubMed] [Google Scholar]
- 272.Wang Q, et al. J Pharmacol Exp Ther. 2006;318:751–761. doi: 10.1124/jpet.106.105965. [PMID: 16707723 ] [DOI] [PubMed] [Google Scholar]
- 273.Bellocchio EE, et al. Science. 2000;289:957–960. doi: 10.1126/science.289.5481.957. [PMID: 10938000 ] [DOI] [PubMed] [Google Scholar]
- 274.Busch AE, et al. Proc Natl Acad Sci USA. 1996;93:5347–5351. doi: 10.1073/pnas.93.11.5347. [PMID: 8643577 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Iharada M, et al. J Biol Chem. 2010;285:26107–26113. doi: 10.1074/jbc.M110.122721. [PMID: 20566650 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 276.Juge N, et al. Neuron. 2010;68:99–112. doi: 10.1016/j.neuron.2010.09.002. [PMID: 20920794 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.Miyaji T, et al. J Neurochem. 2011;119:1–5. doi: 10.1111/j.1471-4159.2011.07388.x. [PMID: 21781115 ] [DOI] [PubMed] [Google Scholar]
- 278.Sawada K, et al. Proc Natl Acad Sci USA. 2008;105:5683–5686. doi: 10.1073/pnas.0800141105. [PMID: 18375752 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Verheijen FW, et al. Nat Genet. 1999;23:462–465. doi: 10.1038/70585. [PMID: 10581036 ] [DOI] [PubMed] [Google Scholar]
- 280.Bravo DT, et al. J Neurochem. 2004;91:766–768. doi: 10.1111/j.1471-4159.2004.02746.x. [PMID: 15485505 ] [DOI] [PubMed] [Google Scholar]
- 281.Bravo DT, et al. Neurochem Int. 2005;47:243–247. doi: 10.1016/j.neuint.2005.05.002. [PMID: 15979764 ] [DOI] [PubMed] [Google Scholar]
- 282.Efange SM, et al. Biochem Pharmacol. 1995;49:791–797. doi: 10.1016/0006-2952(94)00541-s. [PMID: 7702637 ] [DOI] [PubMed] [Google Scholar]
- 283.Eiden LE, et al. Pflugers Arch. 2004;447:636–640. doi: 10.1007/s00424-003-1100-5. [PMID: 12827358 ] [DOI] [PubMed] [Google Scholar]
- 284.Eiden LE, Weihe E. Ann N Y Acad Sci. 2011;1216:86–98. doi: 10.1111/j.1749-6632.2010.05906.x. [PMID: 21272013 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 285.Erickson JD, Eiden LE. J Neurochem. 1993;61:2314–2317. doi: 10.1111/j.1471-4159.1993.tb07476.x. [PMID: 8245983 ] [DOI] [PubMed] [Google Scholar]
- 286.Erickson JD, et al. Proc Natl Acad Sci USA. 1996;93:5166–5171. doi: 10.1073/pnas.93.10.5166. [PMID: 8643547 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 287.Erickson JD, et al. J Biol Chem. 1994;269:21929–21932. [PMID: 8071310 ] [PubMed] [Google Scholar]
- 288.Khare P, et al. Biochemistry. 2010;49:3049–3059. doi: 10.1021/bi901953j. [PMID: 20225888 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 289.Kung MP, et al. Synapse. 1994;18:225–232. doi: 10.1002/syn.890180308. [PMID: 7855735 ] [DOI] [PubMed] [Google Scholar]
- 290.Schirmer SU, et al. Reproduction. 2011;142:157–166. doi: 10.1530/REP-10-0302. [PMID: 21482687 ] [DOI] [PubMed] [Google Scholar]
- 291.Varoqui H, Erickson JD. J Biol Chem. 1996;271:27229–27232. doi: 10.1074/jbc.271.44.27229. [PMID: 8910293 ] [DOI] [PubMed] [Google Scholar]
- 292.Zhu L, et al. Bioorg Med Chem Lett. 2009;19:5026–5028. doi: 10.1016/j.bmcl.2009.07.048. [PMID: 19632829 ] [DOI] [PubMed] [Google Scholar]
- 293.Assaraf YG, et al. J Biol Chem. 1998;273:8106–8111. doi: 10.1074/jbc.273.14.8106. [PMID: 9525913 ] [DOI] [PubMed] [Google Scholar]
- 294.Diaz GA, et al. Nat Genet. 1999;22:309–312. doi: 10.1038/10385. [PMID: 10391223 ] [DOI] [PubMed] [Google Scholar]
- 295.Dutta B, et al. J Biol Chem. 1999;274:31925–31929. doi: 10.1074/jbc.274.45.31925. [PMID: 10542220 ] [DOI] [PubMed] [Google Scholar]
- 296.Prasad PD, et al. Biochem Biophys Res Commun. 1995;206:681–687. doi: 10.1006/bbrc.1995.1096. [PMID: 7826387 ] [DOI] [PubMed] [Google Scholar]
- 297.Rajgopal A, et al. Biochim Biophys Acta. 2001;1537:175–178. doi: 10.1016/s0925-4439(01)00073-4. [PMID: 11731220 ] [DOI] [PubMed] [Google Scholar]
- 298.Zhao R, et al. Am J Physiol, Cell Physiol. 2002;282:C1512–C1517. doi: 10.1152/ajpcell.00547.2001. [PMID: 11997266 ] [DOI] [PubMed] [Google Scholar]
- 299.Ravera S, et al. Am J Physiol, Cell Physiol. 2007;293:C606–C620. doi: 10.1152/ajpcell.00064.2007. [PMID: 17494632 ] [DOI] [PubMed] [Google Scholar]
- 300.Cha SH, et al. J Biol Chem. 2000;275:4507–4512. doi: 10.1074/jbc.275.6.4507. [PMID: 10660625 ] [DOI] [PubMed] [Google Scholar]
- 301.Enomoto A, et al. Nature. 2002;417:447–452. doi: 10.1038/nature742. [PMID: 12024214 ] [DOI] [PubMed] [Google Scholar]
- 302.Gorboulev V, et al. DNA Cell Biol. 1997;16:871–881. doi: 10.1089/dna.1997.16.871. [PMID: 9260930 ] [DOI] [PubMed] [Google Scholar]
- 303.Gründemann D, et al. Mol Pharmacol. 1999;56:1–10. doi: 10.1124/mol.56.1.1. [PMID: 10385678 ] [DOI] [PubMed] [Google Scholar]
- 304.Kimura H, et al. J Pharmacol Exp Ther. 2002;301:293–298. doi: 10.1124/jpet.301.1.293. [PMID: 11907186 ] [DOI] [PubMed] [Google Scholar]
- 305.Kusuhara H, et al. J Biol Chem. 1999;274:13675–13680. doi: 10.1074/jbc.274.19.13675. [PMID: 10224140 ] [DOI] [PubMed] [Google Scholar]
- 306.Youngblood GL, Sweet DH. Am J Physiol Renal Physiol. 2004;287:F236–F244. doi: 10.1152/ajprenal.00012.2004. [PMID: 15068970 ] [DOI] [PubMed] [Google Scholar]
- 307.Zhu HJ, et al. J Neurochem. 2010;114:142–149. doi: 10.1111/j.1471-4159.2010.06738.x. [PMID: 20402963 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Tsukaguchi H, et al. Nature. 1999;399:70–75. doi: 10.1038/19986. [PMID: 10331392 ] [DOI] [PubMed] [Google Scholar]
- 309.Yamamoto S, et al. J Biol Chem. 2010;285:6522–6531. doi: 10.1074/jbc.M109.032961. [PMID: 20042597 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 310.Altimimi HF, Schnetkamp PP. Channels (Austin) 2007;1:62–69. doi: 10.4161/chan.4366. [PMID: 18690016 ] [DOI] [PubMed] [Google Scholar]
- 311.Fiermonte G, et al. J Biol Chem. 2003;278:32778–32783. doi: 10.1074/jbc.M302317200. [PMID: 12807890 ] [DOI] [PubMed] [Google Scholar]
- 312.Fiermonte G, et al. J Biol Chem. 2009;284:18152–18159. doi: 10.1074/jbc.M109.014118. [PMID: 19429682 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313.Chang MH, et al. J Membr Biol. 2009;228:125–140. doi: 10.1007/s00232-009-9165-5. [PMID: 19365592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314.Dorwart MR, et al. J Physiol (Lond) 2007;584:333–345. doi: 10.1113/jphysiol.2007.135855. (Pt 1):. [PMID: 17673510 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 315.Kim KH, et al. J Biol Chem. 2005;280:6463–6470. doi: 10.1074/jbc.M409162200. [PMID: 15591059 ] [DOI] [PubMed] [Google Scholar]
- 316.Blackburn C, et al. Bioorg Med Chem Lett. 2006;16:3504–3509. doi: 10.1016/j.bmcl.2006.03.102. [PMID: 16644217 ] [DOI] [PubMed] [Google Scholar]
- 317.Faergeman NJ, et al. J Biol Chem. 1997;272:8531–8538. doi: 10.1074/jbc.272.13.8531. [PMID: 9079682 ] [DOI] [PubMed] [Google Scholar]
- 318.Gimeno RE, et al. J Biol Chem. 2003;278:16039–16044. doi: 10.1074/jbc.M211412200. [PMID: 12556534 ] [DOI] [PubMed] [Google Scholar]
- 319.Lewis SE, et al. J Biol Chem. 2001;276:37042–37050. doi: 10.1074/jbc.M105556200. [PMID: 11470793 ] [DOI] [PubMed] [Google Scholar]
- 320.Li H, et al. J Lipid Res. 2008;49:230–244. doi: 10.1194/jlr.D700015-JLR200. [PMID: 17928635 ] [DOI] [PubMed] [Google Scholar]
- 321.Mihalik SJ, et al. J Biol Chem. 2002;277:24771–24779. doi: 10.1074/jbc.M203295200. [PMID: 11980911 ] [DOI] [PubMed] [Google Scholar]
- 322.Milger K, et al. J Cell Sci. 2006;119:4678–4688. doi: 10.1242/jcs.03280. (Pt 22):. [PMID: 17062637 ] [DOI] [PubMed] [Google Scholar]
- 323.Ordovás L, et al. Cytogenet Genome Res. 2006;115:115–122. doi: 10.1159/000095230. [PMID: 17065791 ] [DOI] [PubMed] [Google Scholar]
- 324.Sandoval A, et al. Biochem Pharmacol. 2010;79:990–999. doi: 10.1016/j.bcp.2009.11.008. [PMID: 19913517 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 325.Schaffer JE, Lodish HF. Cell. 1994;79:427–436. doi: 10.1016/0092-8674(94)90252-6. [PMID: 7954810 ] [DOI] [PubMed] [Google Scholar]
- 326.Stahl A, et al. Mol Cell. 1999;4:299–308. doi: 10.1016/s1097-2765(00)80332-9. [PMID: 10518211 ] [DOI] [PubMed] [Google Scholar]
- 327.Zhou W, et al. J Biomol Screen. 2010;15:488–497. doi: 10.1177/1087057110369700. [PMID: 20448275 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 328.Baldwin SA, et al. J Biol Chem. 2005;280:15880–15887. doi: 10.1074/jbc.M414337200. [PMID: 15701636 ] [DOI] [PubMed] [Google Scholar]
- 329.Engel K, Wang J. Mol Pharmacol. 2005;68:1397–1407. doi: 10.1124/mol.105.016832. [PMID: 16099839 ] [DOI] [PubMed] [Google Scholar]
- 330.Hammond JR, Archer RG. J Pharmacol Exp Ther. 2004;308:1083–1093. doi: 10.1124/jpet.103.060434. [PMID: 14634039 ] [DOI] [PubMed] [Google Scholar]
- 331.Hsu CL, et al. Science. 2012;335:89–92. doi: 10.1126/science.1213682. [PMID: 22174130 ] [DOI] [PubMed] [Google Scholar]
- 332.Kang N, et al. J Biol Chem. 2010;285:28343–28352. doi: 10.1074/jbc.M110.109199. [PMID: 20595384 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 333.Sundaram M, et al. J Biol Chem. 1998;273:21519–21525. doi: 10.1074/jbc.273.34.21519. [PMID: 9705281 ] [DOI] [PubMed] [Google Scholar]
- 334.Warraich S, et al. J Bone Miner Res. 2013;28:1135–1149. doi: 10.1002/jbmr.1826. [PMID: 23184610 ] [DOI] [PubMed] [Google Scholar]
- 335.Yao SY, et al. J Biol Chem. 2011;286:32552–32562. doi: 10.1074/jbc.M111.236117. [PMID: 21795683 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 336.Salazar G, et al. PLoS ONE. 2009;4:e5896–ePMID. doi: 10.1371/journal.pone.0005896. 19521526 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 337.Suzuki T, et al. J Biol Chem. 2005;280:30956–30962. doi: 10.1074/jbc.M506902200. [PMID: 15994300 ] [DOI] [PubMed] [Google Scholar]
- 338.Blair BG, et al. Clin Cancer Res. 2009;15:4312–4321. doi: 10.1158/1078-0432.CCR-09-0311. [PMID: 19509135 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 339.Ishida S, et al. Proc Natl Acad Sci USA. 2002;99:14298–14302. doi: 10.1073/pnas.162491399. [PMID: 12370430 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 340.Lee J, et al. J Biol Chem. 2002;277:4380–4387. doi: 10.1074/jbc.M104728200. [PMID: 11734551 ] [DOI] [PubMed] [Google Scholar]
- 341.Rees EM, et al. J Biol Chem. 2004;279:54221–54229. doi: 10.1074/jbc.M411669200. [PMID: 15494390 ] [DOI] [PubMed] [Google Scholar]
- 342.Fattorini G, et al. J Neurochem. 2009;110:1538–1546. doi: 10.1111/j.1471-4159.2009.06251.x. [PMID: 19627441 ] [DOI] [PubMed] [Google Scholar]
- 343.Gasnier B. Biochimie. 2000;82:327–337. doi: 10.1016/s0300-9084(00)00221-2. [PMID: 10865121 ] [DOI] [PubMed] [Google Scholar]
- 344.Gasnier B. Pflugers Arch. 2004;447:756–759. doi: 10.1007/s00424-003-1091-2. [PMID: 12750892 ] [DOI] [PubMed] [Google Scholar]
- 345.Juge N, et al. J Biol Chem. 2009;284:35073–35078. doi: 10.1074/jbc.M109.062414. [PMID: 19843525 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 346.Martens H, et al. J Neurosci. 2008;28:13125–13131. doi: 10.1523/JNEUROSCI.3887-08.2008. [PMID: 19052203 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 347.McIntire SL, et al. Nature. 1997;389:870–876. doi: 10.1038/39908. [PMID: 9349821 ] [DOI] [PubMed] [Google Scholar]
- 348.Saito K, et al. Mol Brain. 2010;3:40. doi: 10.1186/1756-6606-3-40. [PMID: 21190592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 349.Schiöth HB, et al. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID: 23506890 ] [DOI] [PubMed] [Google Scholar]
- 350.Wojcik SM, et al. Neuron. 2006;50:575–587. doi: 10.1016/j.neuron.2006.04.016. [PMID: 16701208 ] [DOI] [PubMed] [Google Scholar]
- 351.Zander JF, et al. J Neurosci. 2010;30:7634–7645. doi: 10.1523/JNEUROSCI.0141-10.2010. [PMID: 20519538 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 352.Jonas MC, et al. J Cell Sci. 2010;123:3378–3388. doi: 10.1242/jcs.068841. (Pt 19):. [PMID: 20826464 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 353.Kanamori A, et al. Proc Natl Acad Sci USA. 1997;94:2897–2902. doi: 10.1073/pnas.94.7.2897. [PMID: 9096318 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 354.Lin P, et al. Am J Hum Genet. 2008;83:752–759. doi: 10.1016/j.ajhg.2008.11.003. [PMID: 19061983 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 355.Schlipf NA, et al. Eur J Hum Genet. 2010;18:1065–1067. doi: 10.1038/ejhg.2010.68. [PMID: 20461110 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.Andrini O, et al. Channels (Austin) 2008;2:346–357. doi: 10.4161/chan.2.5.6900. [PMID: 18989094 ] [DOI] [PubMed] [Google Scholar]
- 357.Forster IC, et al. Am J Physiol. 1999;276(4):F644–F649. doi: 10.1152/ajprenal.1999.276.4.F644. Pt 2):. [PMID: 10198426 ] [DOI] [PubMed] [Google Scholar]
- 358.Ashikov A, et al. J Biol Chem. 2005;280:27230–27235. doi: 10.1074/jbc.M504783200. [PMID: 15911612 ] [DOI] [PubMed] [Google Scholar]
- 359.Ishida N, et al. J Biochem. 1998;124:171–178. doi: 10.1093/oxfordjournals.jbchem.a022076. [PMID: 9644260 ] [DOI] [PubMed] [Google Scholar]
- 360.Ishida N, et al. Genomics. 2005;85:106–116. doi: 10.1016/j.ygeno.2004.09.010. [PMID: 15607426 ] [DOI] [PubMed] [Google Scholar]
- 361.Ishida N, et al. J Biochem. 1996;120:1074–1078. doi: 10.1093/oxfordjournals.jbchem.a021523. [PMID: 9010752 ] [DOI] [PubMed] [Google Scholar]
- 362.Ishida N, et al. J Biochem. 1999;126:68–77. doi: 10.1093/oxfordjournals.jbchem.a022437. [PMID: 10393322 ] [DOI] [PubMed] [Google Scholar]
- 363.Kamiyama S, et al. J Biol Chem. 2006;281:10945–10953. doi: 10.1074/jbc.M508991200. [PMID: 16492677 ] [DOI] [PubMed] [Google Scholar]
- 364.Kamiyama S, et al. J Biol Chem. 2003;278:25958–25963. doi: 10.1074/jbc.M302439200. [PMID: 12716889 ] [DOI] [PubMed] [Google Scholar]
- 365.Lühn K, et al. Nat Genet. 2001;28:69–72. doi: 10.1038/ng0501-69. [PMID: 11326279 ] [DOI] [PubMed] [Google Scholar]
- 366.Miura N, et al. J Biochem. 1996;120:236–241. doi: 10.1093/oxfordjournals.jbchem.a021404. [PMID: 8889805 ] [DOI] [PubMed] [Google Scholar]
- 367.Muraoka M, et al. FEBS Lett. 2001;495:87–93. doi: 10.1016/s0014-5793(01)02358-4. [PMID: 11322953 ] [DOI] [PubMed] [Google Scholar]
- 368.Abbot EL, et al. Br J Pharmacol. 2006;147:298–306. doi: 10.1038/sj.bjp.0706557. [PMID: 16331283 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 369.Agulhon C, et al. J Comp Neurol. 2003;462:71–89. doi: 10.1002/cne.10712. [PMID: 12761825 ] [DOI] [PubMed] [Google Scholar]
- 370.Boll M, et al. J Biol Chem. 2002;277:22966–22973. doi: 10.1074/jbc.M200374200. [PMID: 11959859 ] [DOI] [PubMed] [Google Scholar]
- 371.Bröer S. Physiology (Bethesda) 2008;23:95–103. doi: 10.1152/physiol.00045.2007. [PMID: 18400692 ] [DOI] [PubMed] [Google Scholar]
- 372.Bröer S, et al. J Clin Invest. 2008;118:3881–3892. doi: 10.1172/JCI36625. [PMID: 19033659 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 373.Chen Z, et al. J Physiol (Lond) 2003;546:349–361. doi: 10.1113/jphysiol.2002.026500. (Pt 2):. [PMID: 12527723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 374.Chen Z, et al. Biochem Biophys Res Commun. 2003;304:747–754. doi: 10.1016/s0006-291x(03)00648-x. [PMID: 12727219 ] [DOI] [PubMed] [Google Scholar]
- 375.Edwards N, et al. Biochim Biophys Acta. 2011;1808:260–270. doi: 10.1016/j.bbamem.2010.07.032. [PMID: 20691150 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 376.Foltz M, et al. Biochem J. 2005;386:607–616. doi: 10.1042/BJ20041519. (Pt 3):. [PMID: 15504109 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 377.Kennedy DJ, et al. Br J Pharmacol. 2005;144:28–41. doi: 10.1038/sj.bjp.0706029. [PMID: 15644866 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 378.Larsen M, et al. Br J Pharmacol. 2009;157:1380–1389. doi: 10.1111/j.1476-5381.2009.00253.x. [PMID: 19594759 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 379.Larsen MH, et al. Eur J Pharmacol. 2008;578:114–122. doi: 10.1016/j.ejphar.2007.08.050. [PMID: 17950272 ] [DOI] [PubMed] [Google Scholar]
- 380.Metzner L, et al. FASEB J. 2005;19:1468–1473. doi: 10.1096/fj.05-3683com. [PMID: 16126914 ] [DOI] [PubMed] [Google Scholar]
- 381.Pillai SM, Meredith D. J Biol Chem. 2011;286:2455–2460. doi: 10.1074/jbc.M110.172403. [PMID: 21097500 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 382.Sagné C, et al. Proc Natl Acad Sci USA. 2001;98:7206–7211. doi: 10.1073/pnas.121183498. [PMID: 11390972 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 383.Thwaites DT, Anderson CM. Br J Pharmacol. 2011;164:1802–1816. doi: 10.1111/j.1476-5381.2011.01438.x. [PMID: 21501141 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 384.Almqvist J, et al. Biochemistry. 2004;43:9289–9297. doi: 10.1021/bi049334h. [PMID: 15260472 ] [DOI] [PubMed] [Google Scholar]
- 385.Chen SY, et al. FASEB J. 2008;22:2206–2213. doi: 10.1096/fj.07-104851. [PMID: 18337460 ] [DOI] [PubMed] [Google Scholar]
- 386.Pan CJ, et al. PLoS ONE. 2011;6:e23157. doi: 10.1371/journal.pone.0023157. [PMID: 21949678 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 387.Albers A, et al. Pflugers Arch. 2001;443:92–101. doi: 10.1007/s004240100663. [PMID: 11692272 ] [DOI] [PubMed] [Google Scholar]
- 388.Bröer A, et al. J Physiol (Lond) 2002;539:3–14. (Pt 1):. [PMID: 11850497 ] [Google Scholar]
- 389.Fei YJ, et al. J Biol Chem. 2000;275:23707–23717. doi: 10.1074/jbc.M002282200. [PMID: 10823827 ] [DOI] [PubMed] [Google Scholar]
- 390.Hatanaka T, et al. Biochim Biophys Acta. 2001;1510:10–17. doi: 10.1016/s0005-2736(00)00390-4. [PMID: 11342143 ] [DOI] [PubMed] [Google Scholar]
- 391.Hatanaka T, et al. Biochim Biophys Acta. 2000;1467:1–6. doi: 10.1016/s0005-2736(00)00252-2. [PMID: 10930503 ] [DOI] [PubMed] [Google Scholar]
- 392.Hägglund MG, et al. J Biol Chem. 2011;286:20500–20511. doi: 10.1074/jbc.M110.162404. [PMID: 21511949 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 393.Nakanishi T, et al. Biochem Biophys Res Commun. 2001;281:1343–1348. doi: 10.1006/bbrc.2001.4504. [PMID: 11243884 ] [DOI] [PubMed] [Google Scholar]
- 394.Schiöth HB, et al. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID: 23506890 ] [DOI] [PubMed] [Google Scholar]
- 395.Dalton TP, et al. Proc Natl Acad Sci USA. 2005;102:3401–3406. doi: 10.1073/pnas.0406085102. [PMID: 15722412 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 396.Girijashanker K, et al. Mol Pharmacol. 2008;73:1413–1423. doi: 10.1124/mol.107.043588. [PMID: 18270315 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 397.Liu Z, et al. Biochem Biophys Res Commun. 2008;365:814–820. doi: 10.1016/j.bbrc.2007.11.067. [PMID: 18037372 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 398.Liuzzi JP, et al. Proc Natl Acad Sci USA. 2006;103:13612–13617. doi: 10.1073/pnas.0606424103. [PMID: 16950869 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 399.Aguirre P, et al. BMC Neurosci. 2005;6:3. doi: 10.1186/1471-2202-6-3. [PMID: 15667655 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 400.De Domenico I, et al. Blood. 2007;109:2205–2209. doi: 10.1182/blood-2006-06-032516. [PMID: 17077321 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 401.De Domenico I, et al. Proc Natl Acad Sci USA. 2005;102:8955–8960. doi: 10.1073/pnas.0503804102. [PMID: 15956209 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 402.Donovan A, et al. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. [PMID: 16054062 ] [DOI] [PubMed] [Google Scholar]
- 403.Rice AE, et al. J Mol Biol. 2009;386:717–732. doi: 10.1016/j.jmb.2008.12.063. [PMID: 19150361 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 404.Goytain A, Quamme GA. Physiol Genomics. 2005;21:337–342. doi: 10.1152/physiolgenomics.00261.2004. [PMID: 15713785 ] [DOI] [PubMed] [Google Scholar]
- 405.Goytain A, Quamme GA. Biochem Biophys Res Commun. 2005;330:701–705. doi: 10.1016/j.bbrc.2005.03.037. [PMID: 15809054 ] [DOI] [PubMed] [Google Scholar]
- 406.Kolisek M, et al. Am J Physiol, Cell Physiol. 2012;302:C318–C326. doi: 10.1152/ajpcell.00289.2011. [PMID: 22031603 ] [DOI] [PubMed] [Google Scholar]
- 407.Sahni J, Scharenberg AM. Mol Aspects Med. 2013;34:620–628. doi: 10.1016/j.mam.2012.05.012. [PMID: 23506895 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 408.Endeward V, et al. FASEB J. 2008;22:64–73. doi: 10.1096/fj.07-9097com. [PMID: 17712059 ] [DOI] [PubMed] [Google Scholar]
- 409.Ripoche P, et al. Proc Natl Acad Sci USA. 2004;101:17222–17227. doi: 10.1073/pnas.0403704101. [PMID: 15572441 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 410.Westhoff CM, et al. J Biol Chem. 2002;277:12499–12502. doi: 10.1074/jbc.C200060200. [PMID: 11861637 ] [DOI] [PubMed] [Google Scholar]
- 411.Zidi-Yahiaoui N, et al. Am J Physiol, Cell Physiol. 2009;297:C537–C547. doi: 10.1152/ajpcell.00137.2009. [PMID: 19553567 ] [DOI] [PubMed] [Google Scholar]
- 412.Babu E, et al. J Biol Chem. 2003;278:43838–43845. doi: 10.1074/jbc.M305221200. [PMID: 12930836 ] [DOI] [PubMed] [Google Scholar]
- 413.Bodoy S, et al. J Biol Chem. 2005;280:12002–12011. doi: 10.1074/jbc.M408638200. [PMID: 15659399 ] [DOI] [PubMed] [Google Scholar]
- 414.Wallgard E, et al. Arterioscler Thromb Vasc Biol. 2008;28:1469–1476. doi: 10.1161/ATVBAHA.108.165738. [PMID: 18483404 ] [DOI] [PubMed] [Google Scholar]
- 415.Greinacher A, et al. Nat Med. 2010;16:45–48. doi: 10.1038/nm.2070. [PMID: 20037594 ] [DOI] [PubMed] [Google Scholar]
- 416.Inazu M, et al. J Neurochem. 2005;94:1427–1437. doi: 10.1111/j.1471-4159.2005.03299.x. [PMID: 16000150 ] [DOI] [PubMed] [Google Scholar]
- 417.Kommareddi PK, et al. Protein J. 2010;29:417–426. doi: 10.1007/s10930-010-9268-y. [PMID: 20665236 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 418.Kouji H, et al. Arch Biochem Biophys. 2009;483:90–98. doi: 10.1016/j.abb.2008.12.008. [PMID: 19135976 ] [DOI] [PubMed] [Google Scholar]
- 419.Michel V, Bakovic M. FASEB J. 2009;23:2749–2758. doi: 10.1096/fj.08-121491. [PMID: 19357133 ] [DOI] [PubMed] [Google Scholar]
- 420.Michel V, et al. Exp Biol Med (Maywood) 2006;231:490–504. doi: 10.1177/153537020623100503. [PMID: 16636297 ] [DOI] [PubMed] [Google Scholar]
- 421.Nair TS, et al. J Neurosci. 2004;24:1772–1779. doi: 10.1523/JNEUROSCI.5063-03.2004. [PMID: 14973250 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 422.Nakamura T, et al. Biol Pharm Bull. 2010;33:691–696. doi: 10.1248/bpb.33.691. [PMID: 20410607 ] [DOI] [PubMed] [Google Scholar]
- 423.Traiffort E, et al. J Neurochem. 2005;92:1116–1125. doi: 10.1111/j.1471-4159.2004.02962.x. [PMID: 15715662 ] [DOI] [PubMed] [Google Scholar]
- 424.Uchida Y, et al. J Pharmacol Sci. 2009;109:102–109. doi: 10.1254/jphs.08291fp. [PMID: 19122366 ] [DOI] [PubMed] [Google Scholar]
- 425.Wille S, et al. J Immunol. 2001;167:5795–5804. doi: 10.4049/jimmunol.167.10.5795. [PMID: 11698453 ] [DOI] [PubMed] [Google Scholar]
- 426.Yabuki M, et al. Arch Biochem Biophys. 2009;485:88–96. doi: 10.1016/j.abb.2009.02.007. [PMID: 19236841 ] [DOI] [PubMed] [Google Scholar]
- 427.Yamada T, et al. Neurochem Int. 2011;58:354–365. doi: 10.1016/j.neuint.2010.12.011. [PMID: 21185344 ] [DOI] [PubMed] [Google Scholar]
- 428.Graf J, et al. Hum Mutat. 2005;25:278–284. doi: 10.1002/humu.20143. [PMID: 15714523 ] [DOI] [PubMed] [Google Scholar]
- 429.Newton JM, et al. Am J Hum Genet. 2001;69:981–988. doi: 10.1086/324340. [PMID: 11574907 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 430.Shimokawa N, et al. J Neurosci. 2002;22:9160–9165. doi: 10.1523/JNEUROSCI.22-21-09160.2002. [PMID: 12417639 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 431.Nakai Y, et al. J Pharmacol Exp Ther. 2007;322:469–476. doi: 10.1124/jpet.107.122606. [PMID: 17475902 ] [DOI] [PubMed] [Google Scholar]
- 432.Qiu A, et al. Cell. 2006;127:917–928. doi: 10.1016/j.cell.2006.09.041. [PMID: 17129779 ] [DOI] [PubMed] [Google Scholar]
- 433.Salojin KV, et al. Blood. 2011;117:4895–4904. doi: 10.1182/blood-2010-04-279653. [PMID: 21346251 ] [DOI] [PubMed] [Google Scholar]
- 434.Chen Y, et al. J Pharmacol Exp Ther. 2007;322:695–700. doi: 10.1124/jpet.107.123554. [PMID: 17495125 ] [DOI] [PubMed] [Google Scholar]
- 435.Ito S, et al. J Pharmacol Exp Ther. 2010;333:341–350. doi: 10.1124/jpet.109.163642. [PMID: 20065018 ] [DOI] [PubMed] [Google Scholar]
- 436.Masuda S, et al. J Am Soc Nephrol. 2006;17:2127–2135. doi: 10.1681/ASN.2006030205. [PMID: 16807400 ] [DOI] [PubMed] [Google Scholar]
- 437.Ohta KY, et al. Drug Metab Dispos. 2006;34:1868–1874. doi: 10.1124/dmd.106.010876. [PMID: 16928787 ] [DOI] [PubMed] [Google Scholar]
- 438.Otsuka M, et al. Proc Natl Acad Sci USA. 2005;102:17923–17928. doi: 10.1073/pnas.0506483102. [PMID: 16330770 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 439.Tanihara Y, et al. Biochem Pharmacol. 2007;74:359–371. doi: 10.1016/j.bcp.2007.04.010. [PMID: 17509534 ] [DOI] [PubMed] [Google Scholar]
- 440.Terada T, et al. Pharm Res. 2006;23:1696–1701. doi: 10.1007/s11095-006-9016-3. [PMID: 16850272 ] [DOI] [PubMed] [Google Scholar]
- 441.Tsuda M, et al. J Pharmacol Exp Ther. 2009;329:185–191. doi: 10.1124/jpet.108.147918. [PMID: 19164462 ] [DOI] [PubMed] [Google Scholar]
- 442.Yasujima T, et al. Drug Metab Dispos. 2010;38:715–721. doi: 10.1124/dmd.109.030221. [PMID: 20047987 ] [DOI] [PubMed] [Google Scholar]
- 443.Zhang X, Wright SH. Am J Physiol Renal Physiol. 2009;297:F263–F271. doi: 10.1152/ajprenal.00123.2009. [PMID: 19515813 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 444.O'Callaghan KM, et al. J Biol Chem. 2010;285:381–391. doi: 10.1074/jbc.M109.063248. [PMID: 19875448 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 445.Rajagopal A, et al. Nature. 2008;453:1127–1131. doi: 10.1038/nature06934. [PMID: 18418376 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 446.White C, et al. Cell Metab. 2013;17:261–270. doi: 10.1016/j.cmet.2013.01.005. [PMID: 23395172 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 447.Bodmer D, et al. Hum Mol Genet. 2002;11:641–649. doi: 10.1093/hmg/11.6.641. [PMID: 11912179 ] [DOI] [PubMed] [Google Scholar]
- 448.Chiabrando D, et al. J Clin Invest. 2012;122:4569–4579. doi: 10.1172/JCI62422. [PMID: 23187127 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 449.Duffy SP, et al. Mol Cell Biol. 2010;30:5318–5324. doi: 10.1128/MCB.00690-10. [PMID: 20823265 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 450.Lipovich L, et al. Gene. 2002;286:203–213. doi: 10.1016/s0378-1119(02)00457-2. [PMID: 11943475 ] [DOI] [PubMed] [Google Scholar]
- 451.Meyer E, et al. Am J Hum Genet. 2010;86:471–478. doi: 10.1016/j.ajhg.2010.02.004. [PMID: 20206334 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 452.Quigley JG, et al. Cell. 2004;118:757–766. doi: 10.1016/j.cell.2004.08.014. [PMID: 15369674 ] [DOI] [PubMed] [Google Scholar]
- 453.Rajadhyaksha AM, et al. Am J Hum Genet. 2010;87:643–654. doi: 10.1016/j.ajhg.2010.10.013. [PMID: 21070897 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 454.Rey MA, et al. Haematologica. 2008;93:1617–1626. doi: 10.3324/haematol.13359. [PMID: 18815190 ] [DOI] [PubMed] [Google Scholar]
- 455.Tailor CS, et al. J Virol. 1999;73:6500–6505. doi: 10.1128/jvi.73.8.6500-6505.1999. [PMID: 10400745 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 456.Chen LQ, et al. Nature. 2010;468:527–532. doi: 10.1038/nature09606. [PMID: 21107422 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 457.Tagoh H, et al. Biochem Biophys Res Commun. 1996;221:744–749. doi: 10.1006/bbrc.1996.0667. [PMID: 8630032 ] [DOI] [PubMed] [Google Scholar]
- 458.Ballatori N, et al. Hepatology. 2005;42:1270–1279. doi: 10.1002/hep.20961. [PMID: 16317684 ] [DOI] [PubMed] [Google Scholar]
- 459.Christian WV, et al. J Biol Chem. 2012;287:21233–21243. doi: 10.1074/jbc.M112.352245. [PMID: 22535958 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 460.Dawson PA, et al. J Biol Chem. 2005;280:6960–6968. doi: 10.1074/jbc.M412752200. [PMID: 15563450 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 461.Fang F, et al. J Neurochem. 2010;115:220–233. doi: 10.1111/j.1471-4159.2010.06920.x. [PMID: 20649839 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 462.Li N, et al. Biochem J. 2007;407:363–372. doi: 10.1042/BJ20070716. [PMID: 17650074 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 463.Yao Y, et al. J Nutr. 2010;140:1220–1226. doi: 10.3945/jn.110.122911. [PMID: 20463145 ] [DOI] [PubMed] [Google Scholar]