Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2013 Dec 17;170(8):1706–1796. doi: 10.1111/bph.12450

The Concise Guide to Pharmacology 2013/14: Transporters

Stephen PH Alexander 1,*, Helen E Benson 2, Elena Faccenda 2, Adam J Pawson 2, Joanna L Sharman 2, Michael Spedding 3, John A Peters 4, Anthony J Harmar 2
PMCID: PMC3892292  PMID: 24528242

Abstract

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.

It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.

An Introduction to Transporters

The majority of biological solutes are charged organic or inorganic molecules. Cellular membranes are hydrophobic and, therefore, effective barriers to separate them allowing the formation of gradients, which can be exploited, for example, in the generation of energy. Membrane transporters carry solutes across cell membranes, which would otherwise be impermeable to them. The energy required for active transport processes is obtained from ATP turnover or by exploiting ion gradients.

ATP-driven transporters can be divided into three major classes: P-type ATPases; F-type or V-type ATPases and ATP-binding cassette transporters. The first of these, P-type ATPases, are multimeric proteins, which transport (primarily) inorganic cations. The second, F-type or V-type ATPases, are proton-coupled motors, which can function either as transporters or as motors. Last, are ATP-binding cassette transporters, heavily involved in drug disposition as well as transporting endogenous solutes.

The second largest family of membrane proteins in the human genome, after the G protein-coupled receptors, are the SLC solute carrier family. Within the solute carrier family, there are not only a great variety of solutes transported, from simple inorganic ions to amino acids and sugars to relatively complex organic molecules like haem. The solute carrier family includes 52 families of almost 400 members. Many of these overlap in terms of the solutes that they carry. For example, amino acid accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Some SLC family members remain orphan transporters, in as much as a physiological function has yet to be determined. Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain protein. Membrane topology predictions for other families suggest 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, or 14 TM domains. The SLC transporters include members which function as antiports, where solute movement in one direction is balanced by a solute moving in the reverse direction. Symports allow concentration gradients of one solute to allow movement of a second solute across a membrane. A third, relatively small group are equilibrative transporters, which allow solutes to travel across membranes down their concentration gradients. A more complex family of transporters, the SLC27 fatty acid transporters also express enzymatic function. Many of the transporters also express electrogenic properties of ion channels.

Acknowledgments

We wish to acknowledge the tremendous help provided by the Consultants to the Guides past and present (see list in the Overview, p. 1452). We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z]), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.

Conflict of interest

The authors state that there is no conflict of interest to disclose.

List of records presented

  1. 1708 ATP-binding cassette transporter family

  2. 1712 F-type and V-type ATPases

  3. 1714 P-type ATPases

  4. 1717 SLC1 family of amino acid transporters

  5. 1719 SLC2 family of hexose and sugar alcohol transporters

  6. 1721 SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

  7. 1723 SLC4 family of bicarbonate transporters

  8. 1724 SLC5 family of sodium-dependent glucose transporters

  9. 1728 SLC6 neurotransmitter transporter family

  10. 1732 SLC8 family of sodium/calcium exchangers

  11. 1733 SLC9 family of sodium/hydrogen exchangers

  12. 1734 SLC10 family of sodium-bile acid co-transporters

  13. 1736 SLC11 family of proton-coupled metal ion transporters

  14. 1737 SLC12 family of cation-coupled chloride transporters

  15. 1739 SLC13 family of sodium-dependent sulphate/carboxylate transporters

  16. 1740 SLC14 family of facilitative urea transporters

  17. 1741 SLC15 family of peptide transporters

  18. 1742 SLC16 family of monocarboxylate transporters

  19. 1744 SLC17 phosphate and organic anion transporter family

  20. 1746 SLC18 family of vesicular amine transporters

  21. 1748 SLC19 family of vitamin transporters

  22. 1749 SLC20 family of sodium-dependent phosphate transporters

  23. 1750 SLC22 family of organic cation and anion transporters

  24. 1753 SLC23 family of ascorbic acid transporters

  25. 1754 SLC24 family of sodium/potassium/calcium exchangers

  26. 1755 SLC25 family of mitochondrial transporters

  27. 1760 SLC26 family of anion exchangers

  28. 1762 SLC27 family of fatty acid transporters

  29. 1763 SLC28 and SLC29 families of nucleoside transporters

  30. 1765 SLC30 zinc transporter family

  31. 1766 SLC31 family of copper transporters

  32. 1767 SLC32 vesicular inhibitory amino acid transporter

  33. 1768 SLC33 acetylCoA transporter

  34. 1769 SLC34 family of sodium phosphate co-transporters

  35. 1770 SLC35 family of nucleotide sugar transporters

  36. 1772 SLC36 family of proton-coupled amino acid transporters

  37. 1773 SLC37 family of phosphosugar/phosphate exchangers

  38. 1774 SLC38 family of sodium-dependent neutral amino acid transporters

  39. 1776 SLC39 family of metal ion transporters

  40. 1777 SLC40 iron transporter

  41. 1778 SLC41 family of divalent cation transporters

  42. 1779 SLC42 family of Rhesus glycoprotein ammonium transporters

  43. 1780 SLC43 family of large neutral amino acid transporters

  44. 1781 SLC44 choline transporter-like family

  45. 1782 SLC45 family of putative sugar transporters

  46. 1783 SLC46 family of folate transporters

  47. 1784 SLC47 family of multidrug and toxin extrusion transporters

  48. 1785 SLC48 heme transporter

  49. 1786 SLC49 family of FLVCR-related heme transporters

  50. 1787 SLC50 sugar transporter

  51. 1788 SLC51 family of steroid-derived molecule transporters

  52. 1789 SLC52 family of riboflavin transporters

  53. 1790 SLCO family of organic anion transporting polypeptides

ATP-binding cassette transporter family

Overview

ATP-binding cassette transporters are ubiquitous membrane proteins characterized by active ATP-dependent movement of a range of substrates, including ions, lipids, peptides, steroids. Individual subunits are typically made up of two groups of 6TM-spanning domains, with two nucleotide-binding domains (NBD). The majority of eukaryotic ABC transporters are ‘full’ transporters incorporating both TM and NBD entities. Some ABCs, notably the ABCD and ABCG families are half-transporters with only a single membrane spanning domain and one NBD, and are only functional as homo- or heterodimers. Eukaryotic ABC transporters convey substrates from the cytoplasm, either out of the cell or into intracellular organelles. Their role in the efflux of exogenous compounds, notably chemotherapeutic agents, has led to considerable interest.

ABCA subfamily

Systematic nomenclature Common abbreviation HGNC, UniProt Comment
ABCA1 ABC1, CERP ABCA1, O95477 Loss-of-function mutations are associated with Tangier disease, in which plasma HDL cholesterol levels are greatly reduced
ABCA2 ABC2 ABCA2, Q9BZC7
ABCA3 ABC3, ABCC ABCA3, Q99758 Loss-of-function mutations are associated with pulmonary surfactant deficiency
ABCA4 ABCR ABCA4, P78363 Retinal-specific transporter of N-retinylPE; loss-of-function mutations are associated with Stargardt disease, a juvenile onset macular degenerative disease
ABCA5 ABCA5, Q8WWZ7
ABCA6 ABCA6, Q8N139
ABCA7 ABCA7, Q8IZY2 Genome wide association studies identify ABCA7 variants as associated with Alzheimer's Disease 6
ABCA8 ABCA8, O94911
ABCA9 ABCA9, Q8IUA7
ABCA10 ABCA10, Q8WWZ4
ABCA12 ABCA12, Q86UK0 Reported to play a role in skin ceramide formation 23
ABCA13 ABCA13, Q86UQ4

Comments

A number of structural analogues are not found in man: ABCA14 (ENSMUSG00000062017); ABCA15 (ENSMUSG00000054746); ABCA16 (ENSMUSG00000051900) and ABCA17 (ENSMUSG00000035435).

ABCB subfamily

Systematic nomenclature Common abbreviation HGNC, UniProt Comment
ABCB1 MDR1, PGP1 ABCB1, P08183 Responsible for the cellular export of many therapeutic drugs. The mouse and rat have two Mdr1 genes (gene names; Mdr1a and Mdr1b) while the human has only the one gene, MDR1
ABCB2 TAP1 TAP1, Q03518 Endoplasmic reticulum peptide transporter, possibly requires heterodimerization with TAP2
ABCB3 TAP2 TAP2, Q03519 Endoplasmic reticulum peptide transporter, possibly requires heterodimerization with TAP1
ABCB4 PGY3 ABCB4, P21439 Transports phosphatidylcholine from intracellular to extracellular face of the hepatocyte canalicular membrane 13
ABCB5 ABCB5, Q2M3G0 Multidrug resistance protein in, and marker of, melanoma cells 17
ABCB6 MTABC3 ABCB6, Q9NP58 Putative mitochondrial porphyrin transporter 11; other subcellular localizations are possible, such as the plasma membrane, as a specific determinant of the Langereis blood group system 5
ABCB7 ABC7 ABCB7, O75027 Mitochondrial; reportedly essential for haematopoiesis 15
ABCB8 MABC1 ABCB8, Q9NUT2 Mitochondrial; suggested to play a role in chemoresistance of melanoma 4
ABCB9 TAPL ABCB9, Q9NP78 Reported to be lysosomal 7
ABCB10 MTABC2 ABCB10, Q9NRK6 Mitochondrial location; the first human ABC transporter to have a crystal structure reported 18
ABCB11 ABC16 ABCB11, O95342 Loss-of-function mutations are associated with progressive familial intrahepatic cholestasis type 2 19

ABCC subfamily

Systematic nomenclature Common abbreviation HGNC, UniProt Comment
ABCC1 MRP1 ABCC1, P33527 Exhibits a broad substrate specificity 1, including LTC4 (Km 97 nM 12) and estradiol-17β-glucuronide 20
ABCC2 MRP2, cMOAT ABCC2, Q92887 Loss-of-function mutations are associated with Dubin-Johnson syndrome, in which plasma levels of conjugated bilirubin are elevated (OMIM: 237500)
ABCC3 MRP3 ABCC3, O15438 Transports conjugates of glutathione, sulfate or glucuronide 2
ABCC4 MRP4 ABCC4, O15439 Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned 2; reported to export prostaglandins in a manner sensitive to NSAIDS 16
ABCC5 MRP5 ABCC5, O15440 Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned 2
ABCC6 MRP6 ABCC6, O95255 Loss-of-function mutations in ABCC6 are associated with pseudoxanthoma elasticum (OMIM: 264800)
ABCC10 MRP7 ABCC10, Q5T3U5
ABCC11 MRP8 ABCC11, Q96J66 Single nucleotide polymorphisms distinguish wet vs. dry earwax (OMIM: 117800); an association between earwax allele and breast cancer risk is reported in Japanese but not European populations
ABCC12 MRP9 ABCC12, Q96J65

Comments

ABCC7 (also known as CFTR), a 12TM ABC transporter-type protein, is a cAMP-regulated epithelial cell membrane Cl- channel involved in normal fluid transport across various epithelia and can be viewed in the Chloride channels section of the Guide ABCC8 (ENSG00000006071, also known as SUR1, sulfonylurea receptor 1) and ABCC9 (ENSG00000069431, also known as SUR2, sulfonylurea receptor 2) are unusual in that they lack transport capacity but regulate the activity of particular K+ channels (Kir6.1–6.2), conferring nucleotide sensitivity to these channels to generate the canonical KATP channels. ABCC13 (ENSG00000155288) is a possible pseudogene.

ABCD subfamily of peroxisomal ABC transporters

Overview

This family of ‘half-transporters' act as homo- or heterodimers to accumulate fatty acid-CoA esters into peroxisomes for oxidative metabolism 9.

Systematic nomenclature Common abbreviation HGNC, UniProt Comment
ABCD1 ALDP ABCD1, P33897 Transports coenzyme A esters of very long chain fatty acids 21,22; loss-of-function mutations in ABCD1 are associated with adrenoleukodystrophy (OMIM: 3001002)
ABCD2 ALDR ABCD2, Q9UBJ2 Coenzyme A esters of very long chain unsaturated fatty acids 22
ABCD3 PMP70 ABCD3, P28288

Comments

ABCD4 (ENSG00000119688, also known as PMP69, PXMP1-L or P70R) appears to be located on the endoplasmic reticulum 8, with an unclear function. Loss-of-function mutations in the gene encoding ALDP underlie the metabolic storage disorder X-linked adrenoleukodystrophy.

ABCG subfamily

Overview

This family of ‘half-transporters' act as homo- or heterodimers; particularly ABCG5 and ABCG8 are thought to be obligate heterodimers. They are associated with cellular export of sterols and phospholipids, as well as exogenous drugs (ABCG2).

Systematic nomenclature Common abbreviation HGNC, UniProt Comment
ABCG1 ABC8 ABCG1, P45844 Transports sterols and choline phospholipids 10
ABCG2 ABCP ABCG2, Q9UNQ0 Exhibits a broad substrate specificity, including urate and haem, as well as multiple synthetic compounds 10. The functional transporter is likely to be a homodimer, although higher oligomeric states have also been proposed
ABCG4 ABCG4, Q9H172 Putative functional dependence on ABCG1
ABCG5 ABCG5, Q9H222 Transports phytosterols and cholesterol; forms an obligate heterodimer with ABCG8. Loss-of-function mutations in ABCG5 are associated with sitosterolemia (OMIM: 210250)
ABCG8 ABCG8, Q9H221 Transports phytosterols and cholesterol; forms an obligate heterodimer with ABCG5. Loss-of-function mutations in ABCG8 are associated with sitosterolemia (OMIM: 210250)

Comments

A further group of ABC transporter-like proteins have been identified to lack membrane spanning regions and are not believed to be functional transporters, but appear to have a role in protein translation 3,14: ABCE1 (P61221, also known as OABP or 2'-5' oligoadenylate-binding protein); ABCF1 (Q8NE71, also known as ABC50 or TNF-α-stimulated ABC protein); ABCF2 (Q9UG63, also known as iron-inhibited ABC transporter 2) and ABCF3 (Q9NUQ8).

F-type and V-type ATPases

Overview

The F-type (ATP synthase) and the V-type (vacuolar or vesicular proton pump) ATPases, although having distinct subcellular locations and roles, exhibit marked similarities in subunit structure and mechanism. They are both composed of a ‘soluble’ complex (termed F1 or V1) and a membrane complex (Fo or Vo). Within each ATPase complex, the two individual sectors appear to function as connected opposing rotary motors, coupling catalysis of ATP synthesis or hydrolysis to proton transport. Both the F-type and V-type ATPases have been assigned enzyme commission number E.C. 3.6.3.14

F-type ATPase

Overview

The F-type ATPase, also known as ATP synthase or ATP phosphohydrolase (H+-transporting), is a mitochondrial membrane-associated multimeric complex consisting of two domains, an F0 channel domain in the membrane and an F1 domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of ATP, although it is also possible for the enzyme to function as an ATPase. The ATP5O subunit (oligomycin sensitivity-conferring protein, OSCP, (P48047)), acts as a connector between F1 and F0 motors.

The F1 motor, responsible for ATP turnover, has the subunit composition α3β3γδε.

The F0 motor, responsible for ion translocation, is complex in mammals, with probably nine subunits centring on A, B, and C subunits in the membrane, together with D, E, F2, F6, G2 and 8 subunits. Multiple pseudogenes for the F0 motor proteins have been defined in the human genome.

Nomenclature α subunit β subunit γ subunit δ subunit ε subunit
HGNC, UniProt ATP5A1, P25705 ATP5B, P06576 ATP5C1, P36542 ATP5D, P30049 ATP5E, P56381
Nomenclature A subunit B subunit C subunit D subunit E subunit F2 subunit F6 subunit G2 subunit 8 subunit
HGNC, UniProt MT-ATP6, P00846 ATP5F1, P24539 ATP5G1, P05496; ATP5G2, P48201; ATP5G3, Q06055 ATP5H, O75947 ATP5I, P56385 ATP5J2, P56134 ATP5J, P18859 ATP5L2, Q7Z4Y8 MT-ATP8, P03928

V-type ATPase

Overview

The V-type ATPase is most prominently associated with lysosomes in mammals, but also appears to be expressed on the plasma membrane and neuronal synaptic vesicles.

The V1 motor, responsible for ATP turnover, has eight subunits with a composition of A-H.

TheVo motor, responsible for ion translocation, has six subunits (a-e).

Nomenclature A subunit B1 subunit B2 subunit C1 subunit C2 subunit D subunit E1 subunit E2 subunit F subunit G1 subunit G2 subunit G3 subunit H subunit
HGNC, UniProt ATP6V1A, P38606 ATP6V1B1, P15313 ATP6V1B2, P21281 ATP6V1C1, P21283 ATP6V1C2, Q8NEY4 ATP6V1D, Q9Y5K8 ATP6V1E1, P36543 ATP6V1E2, Q96A05 ATP6V1F, Q16864 ATP6V1G1, O75348 ATP6V1G2, O95670 ATP6V1G3, Q96LB4 ATP6V1H, Q9UI12
Nomenclature a1 subunit a2 subunit a3 subunit a4 subunit b subunit c subunit d1 subunit d2 subunit e1 subunit e2 subunit
HGNC, UniProt ATP6V0A1, Q93050 ATP6V0A2, Q9Y487 TCIRG1, Q13488 ATP6V0A4, Q9HBG4 ATP6V0B, Q99437 ATP6V0C, P27449 ATP6V0D1, P61421 ATP6V0D2, Q8N8Y2 ATP6V0E1, O15342 ATP6V0E2, Q8NHE4

P-type ATPases

Overview

Phosphorylation-type ATPases (EC 3.6.3.-) are associated with membranes and the transport of ions or phospholipids. Characteristics of the family are the transient phosphorylation of the transporters at an aspartate residue and the interconversion between E1 and E2 conformations in the activity cycle of the transporters, taken to represent ‘half-channels' facing the cytoplasm and extracellular/luminal side of the membrane, respectively.

Sequence analysis across multiple species allows the definition of five subfamilies, P1-P5. The P1 subfamily includes heavy metal pumps, such as the copper ATPases. The P2 subfamily includes calcium, sodium/potassium and proton/potassium pumps. The P4 and P5 subfamilies include putative phospholipid flippases.

Na+/K+-ATPases (EC 3.6.3.9)

Overview

The cell-surface Na+/K+-ATPase is an integral membrane protein which regulates the membrane potential of the cell by maintaining gradients of Na+ and K+ ions across the plasma membrane, also making a small, direct contribution to membrane potential, particularly in cardiac cells. For every molecule of ATP hydrolysed, the Na+/K+-ATPase extrudes three Na+ ions and imports two K+ ions. The active transporter is a heteromultimer with incompletely defined stoichiometry, possibly as tetramers of heterodimers, each consisting of one of four large, ten TM domain catalytic α subunits and one of three smaller, single TM domain glycoprotein β-subunits (see table). Additional protein partners known as FXYD proteins (e.g. FXYD2, P54710) appear to associate with and regulate the activity of the pump.

Nomenclature α1 subunit α2 subunit α3 subunit α4 subunit β1 subunit β2 subunit β3 subunit
HGNC, UniProt ATP1A1, P05023 ATP1A2, P50993 ATP1A3, P13637 ATP1A4, Q13733 ATP1B1, P05026 ATP1B2, P14415 ATP1B3, P54709

Comments

Na+/K+-ATPases are inhibited by ouabain and cardiac glycosides, such as digoxin, as well as potentially endogenous cardiotonic steroids 24.

Ca2+-ATPases (EC 3.6.3.8)

Overview

The sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) is an intracellular membrane-associated pump for sequestering calcium from the cytosol into intracellular organelles, usually associated with the recovery phase following excitation of muscle and nerves.

The plasma membrane Ca2+-ATPase (PMCA) is a cell-surface pump for extruding calcium from the cytosol, usually associated with the recovery phase following excitation of cells. The active pump is a homodimer, each subunit of which is made up of ten TM segments, with cytosolic C- and N-termini and two large intracellular loops.

Secretory pathway Ca2+-ATPases (SPCA) allow accumulation of calcium and manganese in the Golgi apparatus.

Nomenclature SERCA1 SERCA2 SERCA3
HGNC, UniProt ATP2A1, O14983 ATP2A2, P16615 ATP2A3, Q93084

Comments

The fungal toxin ochratoxin A has been described to activate SERCA in kidney microsomes 25. cyclopiazonic acid 29, thapsigargin 27 and BHQ are widely employed to block SERCA. Thapsigargin has also been described to block the TRPV1 vanilloid receptor 30.

Nomenclature PMCA1 PMCA2 PMCA3 PMCA4
HGNC, UniProt ATP2B1, P20020 ATP2B2, Q01814 ATP2B3, Q16720 ATP2B4, P23634

Comments

The stoichiometry of flux through the PMCA differs from SERCA, with the PMCA transporting 1 Ca2+ while SERCA transports 2 Ca2+.

Nomenclature SPCA1 SPCA2
HGNC, UniProt ATP2C1, P98194 ATP2C2, O75185

Comments

Loss-of-function mutations in SPCA1 appear to underlie Hailey-Hailey disease 26.

H+/K+-ATPases (EC 3.6.3.10)

Overview

The H+/K+ ATPase is a heterodimeric protein, made up of α and β subunits. The α subunit has 10 TM domains and exhibits catalytic and pore functions, while the β subunit has a single TM domain, which appears to be required for intracellular trafficking and stabilising the α subunit. The ATP4A and ATP4B subunits are expressed together, while the ATP12A subunit is suggested to be expressed with the β1 (ATP1B1) subunit of the Na+/K+-ATPase 28.

Nomenclature ATP4A ATP12A ATP4B
HGNC, UniProt ATP4A, P20648 ATP12A, P54707 ATP4B, P51164

Comments

The gastric H+/K+-ATPase is inhibited by proton pump inhibitors used for treating excessive gastric acid secretion, including (R)-lansoprazole and a metabolite of esomeprazole.

Cu+-ATPases (EC 3.6.3.4)

Overview

Copper-transporting ATPases convey copper ions across cell-surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. ATOX1, O00244).

Nomenclature ATP7A ATP7B
HGNC, UniProt ATP7A, Q04656 ATP7B, P35670

Phospholipid-transporting ATPases (EC 3.6.3.1)

Overview

These transporters are thought to translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from one side of the phospholipid bilayer to the other to generate asymmetric membranes. They are also proposed to be involved in the generation of vesicles from intracellular and cell-surface membranes.

Nomenclature ATP8A1 ATP8A2 ATP8B1 ATP8B2 ATP8B3 ATP8B4 ATP9A ATP9B ATP10A ATP10B ATP10D ATP11A ATP11B ATP11C
HGNC, UniProt ATP8A1, Q9Y2Q0 ATP8A2, Q9NTI2 ATP8B1, O43520 ATP8B2, P98198 ATP8B3, O60423 ATP8B4, Q8TF62 ATP9A, O75110 ATP9B, O43861 ATP10A, O60312 ATP10B, O94823 ATP10D, Q9P241 ATP11A, P98196 ATP11B, Q9Y2G3 ATP11C, Q8NB49

Comments

Loss-of-function mutations in ATP8B1 are associated with type I familial intrahepatic cholestasis.

A further series of structurally-related proteins have been identified in the human genome, with as yet undefined function, including ATP13A1 (Q9HD20), ATP13A2 (Q9NQ11), ATP13A3 (Q9H7F0), ATP13A4 (Q4VNC1) and ATP13A5 (Q4VNC0).

SLC1 family of amino acid transporters

Overview

The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 31,37,64,65,76.

Glutamate transporter subfamily

Overview

Glutamate transporters present the unusual structural motif of 8TM segments and 2 re-entrant loops 60. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation 38,78,93 reviewed by 63). This structural data is in agreement with the proposed quaternary structure for EAAT2 55 and several functional studies that propose the monomer is the functional unit 57,67,69,83. Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers 74. The activity of glutamate transporters located upon both neurones (predominantly EAAT3, 4 and 5) and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate-glutamine cycle. The Na+/K+-ATPase that maintains the ion gradients that drive transport has been demonstrated to co-assemble with EAAT1 and EAAT2 80. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 54,70. Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss-of-function mutations in EAAT3 36. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting from administration of β-lactam antibiotics (e.g. ceftriaxone) is neuroprotective and occurs through NF-κB-mediated EAAT2 promoter activation 53,71,81 reviewed by 66). PPARγ activation (e.g. by rosiglitazone) also leads to enhanced expression of EAAT though promoter activation 79. In addition, several translational activators of EAAT2 have recently been described 42 along with treatments that increase the surface expression of EAAT2 (e.g.68; 98), or prevent its down-regulation (e.g.56). A thermodynamically uncoupled Cl- flux, activated by Na+ and glutamate 59,64,73 (Na+ and aspartate in the case of GltPh 82), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability 88,92. Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter 52.

Nomenclature Excitatory amino acid transporter 1 Excitatory amino acid transporter 2 Excitatory amino acid transporter 3 Excitatory amino acid transporter 4 Excitatory amino acid transporter 5
Systematic nomenclature SLC1A3 SLC1A2 SLC1A1 SLC1A6 SLC1A7
Common abbreviation EAAT1 EAAT2 EAAT3 EAAT4 EAAT5
HGNC, UniProt SLC1A3, P43003 SLC1A2, P43004 SLC1A1, P43005 SLC1A6, P48664 SLC1A7, O00341
Endogenous substrates L-glutamic acid, L-aspartic acid L-glutamic acid, L-aspartic acid L-glutamic acid, L-aspartic acid, L-cysteine 94 L-glutamic acid, L-aspartic acid L-glutamic acid, L-aspartic acid
Substrates DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid DL-threo-β-hydroxyaspartate, L-trans-2,4-pyrolidine dicarboxylate, D-aspartic acid
Inhibitors (pIC50) DL-TBOA (pKB 5.0) 85, UCPH-101 (membrane potential assay) (6.9) 62 DL-TBOA (pKB 6.9) 85, SYM2081 (pKB 5.5) 91, dihydrokainate (pKB 5.0), threo-3-methylglutamate (pKB 4.7) 91, WAY-213613 (6.9) NBI-59159 (7.6), L-β-BA ([3H]D-aspartate uptake assay) (6.1), DL-TBOA (5.1) DL-TBOA (pKi 5.4) 84, threo-3-methylglutamate (pKi 4.3) 47 DL-TBOA (pKi 5.5) 84
Radioligands (Kd) [3H](2S,4R)-4-methylglutamate, [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (1.55x10−8 M) [3H](2S,4R)-4-methylglutamate, [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (1.62x10−8 M) [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (3.2x10−7 M) [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (2.48x10−8 M) [3H]D-aspartic acid, [3H]L-aspartic acid, [3H]ETB-TBOA (2.95x10−8 M)
Stoichiometry Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 72 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out) 95 Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+(out) Probably 3 Na+: 1 H+: 1 glutamate (in): 1 K+ (out)

Comments

The KB (or Ki) values reported, unless indicated otherwise, are derived from transporter currents mediated by EAATs expressed in voltage-clamped Xenopus laevis oocytes 47,84,85,91. KB (or Ki) values derived in uptake assays are generally higher (e.g.85). In addition to acting as a poorly transportable inhibitor of EAAT2, (2S,4R)-4-methylglutamate, also known as SYM2081, is a competitive substrate for EAAT1 (KM = 54μM; 61,91) and additionally is a potent kainate receptor agonist 97 which renders the compound unsuitable for autoradiographic localisation of EAATs 33. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors 85. WAY-855 and WAY-213613 are both non-substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 45,46. NBI-59159 is a non-substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (>10-fold) and EAAT2 (5-fold) 43,44. Analogously, L-β-threo-benzyl-aspartate (L-β-BA) is a competitive non-substrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 48. [3H](2S,4R)-4-methylglutamate demonstrates low affinity binding (KD ≅ 6.0 μM) to EAAT1 and EAAT2 in rat brain homogenates 34 and EAAT1 in murine astrocyte membranes 32, whereas [3H]ETB-TBOA binds with high affinity to all EAATs other than EAAT3 86. The novel isoxazole derivative (–)-HIP-A may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate 41. threo-3-methylglutamate induces substrate-like currents at EAAT4, but does not elicit heteroexchange of [3H]-aspartate in synaptosome preparations, inconsistent with the behaviour of a substrate inhibitor 47. parawixin 1, a compound isolated from the venom from the spider Parawixia bistriata is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 50,51. In addition to the agents listed in the table, DL-threo-β-hydroxyaspartate and L-trans-2,4-pyrolidine dicarboxylate act as non-selective competitive substrate inhibitors of all EAATs. Zn2+ and arachidonic acid are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by 90).

Alanine/serine/cysteine transporter subfamily

Overview

ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr and their structure is predicted to be similar to that of the glutamate transporters 35,89. ASCT1 and ASCT2 also exhibit thermodynamically uncoupled chloride channel activity associated with substrate transport 40,96. Whereas EAATs counter-transport K+ (see above) ASCTs do not and their function is independent of the intracellular concentration of K+96.

Nomenclature Alanine/serine/cysteine transporter 1 Alanine/serine/cysteine transporter 2
Systematic nomenclature SLC1A4 SLC1A5
Common abbreviation ASCT1 ASCT2
HGNC, UniProt SLC1A4, P43007 SLC1A5, Q15758
Endogenous substrates L-cysteine > L-alanine = L-serine > L-threonine L-alanine = L-serine = L-cysteine (low Vmax) = L-threonine = L-glutamine = L-asparagine >> L-methionine ≅ glycine ≅ L-leucine > L-valine > L-glutamic acid (enhanced at low pH)
Inhibitors (pIC50) benzylcysteine 58, benzylserine 58, p-nitrophenyl glutamyl anilide 49
Stoichiometry 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo-, or hetero-exchange; 95) 1 Na+: 1 amino acid (in): 1 Na+: 1 amino acid (out); (homo-, or hetero-exchange; 39)

Comments

The substrate specificity of ASCT1 may extend to L-proline and L-hydroxyproline 77. At low pH (∼5.5) both ASCT1 and ASCT2 are able to exchange acidic amino acids such as L-cysteate and glutamate 87,89. In addition to the inhibitors tabulated above, HgCl2, methylmercury, mersalyl, at low micromolar concentrations, non-competitively inhibit ASCT2 by covalent modificiation of cysteine residues 75.

SLC2 family of hexose and sugar alcohol transporters

Overview

The SLC2 family transports D-glucose, D-fructose, inositol (e.g. myo-inositol) and related hexoses. Three classes of glucose transporter can be identified, separating GLUT1-4 and 14, GLUT6, 8, 10 and 12; and GLUT5, 7, 9 and 11. Modelling suggests a 12 TM membrane topology, with intracellular termini, with functional transporters acting as homodimers or homotetramers.

Class I transporters

Overview

Class I transporters are able to transport D-glucose, but not D-fructose, in the direction of the concentration gradient and may be inhibited non-selectively by phloretin and cytochalasin B. GLUT1 is the major glucose transporter in brain, placenta and erythrocytes, GLUT2 is found in the pancreas, liver and kidneys, GLUT3 is neuronal and placental, while GLUT4 is the insulin-responsive transporter found in skeletal muscle, heart and adipose tissue. GLUT14 appears to result from gene duplication of GLUT3 and is expressed in the testes 105.

Nomenclature Glucose transporter 1 Glucose transporter 2 Glucose transporter 3 Glucose transporter 4 Glucose transporter 14
Systematic nomenclature SLC2A1 SLC2A2 SLC2A3 SLC2A4 SLC2A14
Common abbreviation GLUT1 GLUT2 GLUT3 GLUT4 GLUT14
HGNC, UniProt SLC2A1, P11166 SLC2A2, P11168 SLC2A3, P11169 SLC2A4, P14672 SLC2A14, Q8TDB8
Substrates D-glucose = D-glucosamine 104, dehydroascorbic acid 99 D-glucosamine > D-glucose 104 D-glucose D-glucosamine ≥ D-glucose 104
Radioligands (Kd) [3H]2-deoxyglucose [3H]2-deoxyglucose [3H]2-deoxyglucose [3H]2-deoxyglucose

Class II transporters

Overview

Class II transporters transport D-fructose and appear to be insensitive to cytochalasin B. Class II transporters appear to be predominantly intracellularly located.

Nomenclature Glucose transporter 6 Glucose transporter 8 Glucose transporter 10 Glucose transporter 12
Systematic nomenclature SLC2A6 SLC2A8 SLC2A10 SLC2A12
Common abbreviation GLUT6 GLUT8 GLUT10 GLUT12
HGNC, UniProt SLC2A6, Q9UGQ3 SLC2A8, Q9NY64 SLC2A10, O95528 SLC2A12, Q8TD20
Substrates D-glucose 101 D-glucose 102, dehydroascorbic acid 102 D-glucose 103

Proton-coupled inositol transporter

Overview

Proton-coupled inositol transporters are expressed predominantly in the brain and can be inhibited by phloretin and cytochalasin B 104.

Nomenclature Proton myo-inositol cotransporter
Systematic nomenclature SLC2A13
Common abbreviation HMIT
HGNC, UniProt SLC2A13, Q96QE2
Substrates myo-inositol 104, D-chiro-inositol 104, muco-inositol 104, scyllo-inositol 104
Stoichiometry 1 H+: 1 inositol (in) 100

SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

Overview

The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide-linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).

SLC3 family

Overview

SLC3 family members are single TM proteins with extensive glycosylation of the exterior C-terminus, which heterodimerize with SLC7 family members in the endoplasmic reticulum and assist in the plasma membrane localization of the transporter.

Nomenclature rBAT 4F2hc
Systematic nomenclature SLC3A1 SLC3A2
Common abbreviation rBAT 4F2hc
HGNC, UniProt SLC3A1, Q07837 SLC3A2, P08195

SLC7 family

Overview

SLC7 family members may be divided into two major groups: cationic amino acid transporters (CATs) and glycoprotein-associated amino acid transporters (gpaATs).

Cationic amino acid transporters are 14 TM proteins, which mediate pH- and sodium-independent transport of cationic amino acids (system y+), apparently as an exchange mechanism. These transporters are sensitive to inhibition by N-ethylmaleimide.

Nomenclature High affinity cationic amino acid transporter 1 Low affinity cationic amino acid transporter 2 Cationic amino acid transporter 3 Cationic amino acid transporter 4 Probable cationic amino acid transporter
Systematic nomenclature SLC7A1 SLC7A2 SLC7A3 SLC7A4 SLC7A14
Common abbreviation CAT1 CAT2 CAT3 CAT4
HGNC, UniProt SLC7A1, P30825 SLC7A2, P52569 SLC7A3, Q8WY07 SLC7A4, O43246 SLC7A14, Q8TBB6
Substrates L-arginine, L-lysine, L-ornithine, L-histidine L-arginine, L-lysine, L-ornithine, L-histidine L-arginine, L-lysine, L-ornithine

Glycoprotein-associated amino acid transporters are 12 TM proteins, which heterodimerize with members of the SLC3 family to act as cell-surface amino acid exchangers.

Nomenclature L-type amino acid transporter 1 L-type amino acid transporter 2 y+L amino acid transporter 1 y+L amino acid transporter 2 b0,+-type amino acid transporter 1 Asc-type amino acid transporter 1 Cystine/glutamate transporter
Systematic nomenclature SLC7A5 SLC7A8 SLC7A7 SLC7A6 SLC7A9 SLC7A10 SLC7A11
Common abbreviation LAT1 LAT2 y+LAT1 y+LAT2 b0,+AT Asc-1 xCT
HGNC, UniProt SLC7A5, Q01650 SLC7A8, Q9UHI5 SLC7A7, Q9UM01 SLC7A6, Q92536 SLC7A9, P82251 SLC7A10, Q9NS82 SLC7A11, Q9UPY5

Comments

CAT4 appears to be non-functional in heterologous expression 106, while SLC7A14 has yet to be characterized.

Heterodimers between 4F2hc and LAT1 or LAT2 generate sodium-independent system L transporters. LAT1 transports large neutral amino acids including branched-chain and aromatic amino acids as well as miglustat, whereas LAT2 transports most of the neutral amino acids.

Heterodimers between 4F2hc and y+LAT1 or y+LAT2 generate transporters similar to the system y+L, which transport cationic (L-arginine, L-lysine, L-ornithine) amino acids independent of sodium and neutral (L-leucine, L-isoleucine, L-methionine, L-glutamine) amino acids in a partially sodium-dependent manner. These transporters are N-ethylmaleimide-insensitive. Heterodimers between rBAT and b0,+AT appear to mediate sodium-independent system b0,+ transport of most of the neutral amino acids and cationic amino acids (L-arginine, L-lysine and L-ornithine).

Asc-1 appears to heterodimerize with 4F2hc to allow the transport of small neutral amino acids (such as L-alanine, L-serine, L-threonine, L-glutamine and glycine), as well as D-serine, in a sodium-independent manner.

xCT generates a heterodimer with 4F2hc for a system x-e-c transporter that mediates the sodium-independent exchange of L-cystine and L-glutamic acid.

AGT has been conjugated with SLC3 members as fusion proteins to generate functional transporters, but the identity of a native heterodimer has yet to be ascertained.

SLC4 family of bicarbonate transporters

Overview

Together with the SLC26 family, the SLC4 family of transporters subserve anion exchange, principally of chloride and bicarbonate (HCO3-), but also carbonate and hydrogen sulphate (HSO4-). SLC4 family members regulate bicarbonate fluxes as part of carbon dioxide movement, chyme neutralization and reabsorption in the kidney.

Within the family, subgroups of transporters are identifiable: the electroneutral sodium-independent Cl-/HCO3- transporters (AE1, AE2 and AE3), the electrogenic sodium-dependent HCO3- transporters (NBCe1 and NBCe2) and the electroneutral HCO3- transporters (NBCn1 and NBCn2). Topographical information derives mainly from study of AE1, abundant in erythrocytes, which suggests a dimeric or tetrameric arrangement, with subunits made up of 13 TM domains and re-entrant loops at TM9/10 and TM11/12. The N terminus exhibits sites for interaction with multiple proteins, including glycolytic enzymes, haemoglobin and cytoskeletal elements.

Anion exchangers

Nomenclature Anion exchange protein 1 Anion exchange protein 2 Anion exchange protein 3 Anion exchange protein 4
Systematic nomenclature SLC4A1 SLC4A2 SLC4A3 SLC4A9
Common abbreviation AE1 AE2 AE3 AE4
HGNC, UniProt SLC4A1, P02730 SLC4A2, P04920 SLC4A3, P48751 SLC4A9, Q96Q91
Endogenous substrates Cl-, HCO3- Cl-, HCO3- Cl-, HCO3-
Stoichiometry 1 Cl- (in): 1 HCO3- (out) 1 Cl- (in): 1 HCO3- (out) 1 Cl- (in): 1 HCO3- (out)

Sodium-dependent HCO3- transporters

Nomenclature Electrogenic sodium bicarbonate cotransporter 1 Electrogenic sodium bicarbonate cotransporter 4 Electroneutral sodium bicarbonate cotransporter 1 Electroneutral sodium bicarbonate cotransporter 2 NBCBE NaBC1
Systematic nomenclature SLC4A4 SLC4A5 SLC4A7 SLC4A10 SLC4A8 SLC4A11
Common abbreviation NBCe1 NBCe2 NBCn1 NBCn2 NDCBE BTR1
HGNC, UniProt SLC4A4, Q9Y6R1 SLC4A5, Q9BY07 SLC4A7, Q9Y6M7 SLC4A10, Q6U841 SLC4A8, Q2Y0W8 SLC4A11, Q8NBS3
Endogenous substrates NaHCO3- NaHCO3- NaHCO3- NaHCO3- Cl-, NaHCO3- Cl-, NaHCO3-
Stoichiometry 1 Na+: 2/3 HCO3- (out) or 1 Na+: CO32* 1 Na+: 2/3 HCO3- (out) or 1 Na+: CO32* 1 Na+: 1 HCO3- (out) or 1 Na+: CO32* 1 Na+: 1 HCO3- (out) or 1 Na: CO32* 1 Na+: 2HCO3- (in): 1 Cl- (out)

SLC5 family of sodium-dependent glucose transporters

Overview

The SLC5 family of sodium-dependent glucose transporters includes, in mammals, the Na+/substrate co-transporters for glucose (e.g. choline), D-glucose, monocarboxylates, myo-inositol and I-121,122,142,143. Members of the SLC5 and SLC6 families, along with other unrelated Na+ cotransporters (i.e. Mhp1 and BetP), share a common structural core that contains an inverted repeat of 5TM α-helical domains 107.

Hexose transporter family

Overview

Detailed characterisation of members of the hexose transporter family is limited to SGLT1, 2 and 3, which are all inhibited in a competitive manner by phlorizin, a natural dihydrocholine glucoside, that exhibits modest selectivity towards SGLT2 (see 142 for an extensive review). SGLT1 is predominantly expressed in the small intestine, mediating the absorption of glucose (e.g. D-glucose), but also occurs in the brain, heart and in the late proximal straight tubule of the kidney. The expression of SGLT2 is almost exclusively restricted to the early proximal convoluted tubule of the kidney, where it is largely responsible for the renal reabsorption of glucose. SGLT3 is not a transporter but instead acts as a glucosensor generating an inwardly directed flux of Na+ that causes membrane depolarization 117.

Nomenclature SGLT1 SGLT2 SGLT3 SGLT4 SGLT5
Systematic nomenclature SLC5A1 SLC5A2 SLC5A4 SLC5A9 SLC5A10
Common abbreviation SGLT1 SGLT2 SGLT3 SGLT4 SGLT5
HGNC, UniProt SLC5A1, P13866 SLC5A2, P31639 SLC5A4, Q9NY91 SLC5A9, Q2M3M2 SLC5A10, A0PJK1
Substrates D-glucose, α-MDG, D-galactose D-glucose, α-MDG D-glucose, N-ethyl-1-deoxynojirimycin, 1-deoxynojirimycin, 1-deoxynojirimycin-1-sulfonic acid, miglustat, miglitol D-glucose, α-MDG, D-mannose D-glucose, D-galactose
Inhibitors (pIC50) remogliflozin (pKi 5.4), sergliflozin (pKi 5.1), canagliflozin (6.4), dapagliflozin (5.9), empagliflozin (5.1) remogliflozin (pKi 7.9), sergliflozin (pKi 6.8), dapagliflozin (9.0), canagliflozin (8.7), empagliflozin (8.5)
Stoichiometry 2 Na+: 1 glucose 129 1 Na+: 1 glucose 127

Comments

Recognition and transport of substrate by SGLTs requires that the sugar is a pyranose. De-oxyglucose derivatives have reduced affinity for SGLT1, but the replacement of the sugar equatorial hydroxyl group by fluorine at some positions, excepting C2 and C3, is tolerated (see 142 for a detailed quantification). Although SGLT1 and SGLT2 have been described as high- and low-affinity sodium glucose co-transporters, respectively, recent work suggests that they have a similar affinity for glucose under physiological conditions 127. Selective blockers of SGLT2, and thus blocking ∼50% of renal glucose reabsorption, are in use and in further development for the treatment of diabetes (e.g.113).

Choline transporter

Overview

The high affinity, hemicholinium-3-sensitive, choline transporter (CHT) is expressed mainly in cholinergic neurones on nerve cell terminals and synaptic vesicles (keratinocytes being an additional location). In autonomic neurones, expression of CHT requires an activity-dependent retrograde signal from postsynaptic neurones 130. Through recapture of choline generated by the hydrolysis of ACh by acetylcholinesterase, CHT serves to maintain acetylcholine synthesis within the presynaptic terminal 121. Homozygous mice engineered to lack CHT die within one hour of birth as a result of hypoxia arising from failure of transmission at the neuromuscular junction of the skeletal muscles that support respiration 120. A low affinity choline uptake mechanism that remains to be identified at the molecular level may involve multiple transporters. In addition, a family of choline transporter-like (CTL) proteins, (which are members of the SLC44 family) with weak Na+ dependence have been described 140.

Nomenclature CHT
Systematic nomenclature SLC5A7
Common abbreviation CHT
HGNC, UniProt SLC5A7, Q9GZV3
Endogenous substrates choline
Substrates triethylcholine
Selective inhibitors (pIC50) hemicholinium-3 (pKi 8.3 – 9.0)
Radioligands (Kd) [3H]hemicholinium-3 (4x10-9 – 6x10-9 M)
Stoichiometry Na+: choline (variable stoichimetry); modulated by extracellular Cl-128

Comments

Ki and KD values for hemicholinium-3 listed in the table are for human CHT expressed in Xenopus laevis oocytes 133, or COS-7 cells 109. hemicholinium mustard is a substrate for CHT that causes covalent modification and irreversible inactivation of the transporter. Several exogenous substances (e.g. triethylcholine) that are substrates for CHT act as precursors to cholinergic false transmitters.

Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monocarboxylate transporters

Overview

The sodium-iodide symporter (NIS) is an iodide transporter found principally in the thyroid gland where it mediates the accumulation of I- within thyrocytes. Transport of I- by NIS from the blood across the basolateral membrane followed by apical efflux into the colloidal lumen, mediated at least in part by pendrin (SLC22A4), and most likely not SMCT1 (SLC5A8) as once thought, provides the I- required for the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) 111. NIS is also expressed in the salivary glands, gastric mucosa, intestinal enterocytes and lactating breast. NIS mediates I- absorption in the intestine and I- secretion into the milk. SMVT is expressed on the apical membrane of intestinal enterocytes and colonocytes and is the main system responsible for biotin (vitamin H) and pantothenic acid (vitamin B5) uptake in humans 135. SMVT located in kidney proximal tubule epithelial cells mediates the reabsorption of biotin and pantothenic acid. SMCT1 (SLC5A8), which transports a wide range of monocarboxylates, is expressed in the apical membrane of epithelia of the small intestine, colon, kidney, brain neurones and the retinal pigment epithelium 122. SMCT2 (SLC5A12) also localises to the apical membrane of kidney, intestine, and colon, but in the brain and retina is restricted to astrocytes and Müller cells, respectively 122. SMCT1 is a high-affinity transporter whereas SMCT2 is a low-affinity transporter. The physiological substrates for SMCT1 and SMCT2 are lactate (L-lactic acid and D-lactic acid), pyruvic acid, propanoic acid, and nicotinic acid in non-colonic tissues such as the kidney. SMCT1 is also likely to be the principal transporter for the absorption of nicotinic acid (vitamin B3) in the intestine and kidney 124. In the small intestine and colon, the physiological substrates for these transporters are nicotinic acid and the short-chain fatty acids acetic acid, propanoic acid, and butyric acid that are produced by bacterial fermentation of dietary fiber 132. In the kidney, SMCT2 is responsible for the bulk absorption of lactate because of its low-affinity/high-capacity nature. Absence of both transporters in the kidney leads to massive excretion of lactate in urine and consequently drastic decrease in the circulating levels of lactate in blood 138. SMCT1 also functions as a tumour suppressor in the colon as well as in various other non-colonic tissues 123. The tumour-suppressive function of SMCT1 is based on its ability to transport pyruvic acid, an inhibitor of histone deacetylases, into cells in non-colonic tissues 139; in the colon, the ability of SMCT1 to transport butyric acid and propanoic acid, also inhibitors of histone deacetylases, underlies the tumour-suppressive function of this transporter 122,123,125. The ability of SMCT1 to promote histone acetylase inhibition through accumulation of butyric acid and propanoic acid in immune cells is also responsible for suppression of dendritic cell development in the colon 137.

Nomenclature NIS SMVT SMCT1 SMCT2
Systematic nomenclature SLC5A5 SLC5A6 SLC5A8 SLC5A12
Common abbreviation NIS SMVT SMCT1 SMCT2
HGNC, UniProt SLC5A5, Q92911 SLC5A6, Q9Y289 SLC5A8, Q8N695 SLC5A12, Q1EHB4
Substrates NO3-, pertechnetate, perchlorate, thiocyanate, I- pantothenic acid 116, I-116, biotin 116, lipoic acid 116 acetic acid, butyric acid, propanoic acid, nicotinic acid, β-D-hydroxybutyric acid, L-lactic acid, D-lactic acid, salicylic acid, 3-bromopyruvate, dichloroacetate, 2-oxothiazolidine-4-carboxylate, acetoacetic acid, benzoate, 5-aminosalicylate, α-ketoisocaproate, β-L-hydroxybutyric acid, pyroglutamic acid, γ-hydroxybutyric acid, pyruvic acid nicotinic acid, L-lactic acid, pyruvic acid
Inhibitors (pIC50) fenoprofen, ketoprofen, ibuprofen (4.2)
Stoichiometry 2Na+: 1 I-119; 1Na+: 1 ClO4-118 2Na+: 1 biotin (or pantothenic acid) 134 2Na+: 1 monocarboxylate 114

Comments

I-, perchlorate, thiocyanate and NO3- are competitive substrate inhibitors of NIS 118. lipoic acid appears to act as a competitive substrate inhibitor of SMVT 141 and the anticonvulsant drugs primidone and carbamazepine competitively block the transport of biotin by brush border vesicles prepared from human intestine 136.

Sodium myo-inositol cotransporter transporters

Overview

Three different mammalian myo-inositol cotransporters are currently known; two are the Na+-coupled SMIT1 and SMIT2 tabulated below and the third is proton-coupled HMIT (SLC2A13). SMIT1 and SMIT2 have a widespread and overlapping tissue location but in polarized cells, such as the Madin-Darby canine kidney cell line, they segregate to the basolateral and apical membranes, respectively 110. In the nephron, SMIT1 mediates myo-inositol uptake as a ‘compatible osmolyte’ when inner medullary tubules are exposed to increases in extracellular osmolality, whilst SMIT2 mediates the reabsorption of myo-inositol from the filtrate. In some species (e.g. rat, but not rabbit) apically located SMIT2 is responsible for the uptake of myo-inositol from the intestinal lumen 108.

Nomenclature SMIT SGLT6
Systematic nomenclature SLC5A3 SLC5A11
Common abbreviation SMIT1 SMIT2
HGNC, UniProt SLC5A3, P53794 SLC5A11, Q8WWX8
Substrates myo-inositol, scyllo-inositol > L-fucose > L-xylose > L-glucose, D-glucose, α-methyl-D-glucopyranoside > D-galactose, D-fucose > D-xylose 126 myo-inositol = D-chiro-inositol> D-glucose > D-xylose > L-xylose 115
Inhibitors (pIC50) phlorizin phlorizin
Stoichiometry 2 Na+ :1 myo-inositol 126 2 Na+ :1 myo-inositol 112

Comments

The data tabulated are those for dog SMIT1 and rabbit SMIT2. SMIT2 transports D-chiro-inositol, but SMIT1 does not. In addition, whereas SMIT1 transports both D-xylose and L-xylose and D-fucose and L-fucose, SMIT2 transports only the D-isomers of these sugars 115,126. Thus the substrate specificities of SMIT1 (for L-fucose ) and SMIT2 (for D-chiro-inositol) allow discrimination between the two SMITs. Human SMIT2 appears not to transport glucose 131.

SLC6 neurotransmitter transporter family

Overview

Members of the solute carrier family 6 (SLC6) of sodium- and (sometimes chloride-) dependent neurotransmitter transporters 152,156,179 are primarily plasma membrane located and may be divided into four subfamilies that transport monoamines, GABA, glycine and neutral amino acids, plus the related bacterial NSS transporters 189. The members of this superfamily share a structural motif of 10 TM segments that has been observed in crystal structures of the NSS bacterial homolog LeuTAa, a Na+-dependent amino acid transporter from Aquiflex aeolicus206 and in several other transporter families structurally related to LeuT 164.

Monoamine transporter subfamily

Overview

Monoamine neurotransmission is limited by perisynaptic transporters. Presynaptic monoamine transporters allow recycling of synaptically released noradrenaline, dopamine and 5-hydroxytryptamine (5-HT).

Nomenclature Noradrenaline transporter Dopamine transporter 5HT transporter
Systematic nomenclature SLC6A2 SLC6A3 SLC6A4
Common abbreviation NET DAT SERT
HGNC, UniProt SLC6A2, P23975 SLC6A3, Q01959 SLC6A4, P31645
Endogenous substrates (-)-adrenaline, (-)-noradrenaline, dopamine (-)-adrenaline, (-)-noradrenaline, dopamine 5-HT
Substrates MPP+, methamphetamine, amphetamine MPP+, methamphetamine, amphetamine MDMA, p-chloroamphetamine
Selective inhibitors (pIC50) mazindol (pKi 8.9), nisoxetine (pKi 8.4), nomifensine (pKi 8.1), reboxetine (pKi 8.0) 205 mazindol (pKi 8.0), WIN35428 (pKi 7.9), GBR12935 (pKi 7.6) paroxetine (pKi 9.6) 198, sertraline (pKi 9.1), fluoxetine (pKi 8.5) 198
Radioligands (Kd) [3H]mazindol (5x10-10 M), [3H]nisoxetine (4x10-9 M) [3H]GBR12935 (3x10-9 M) 186, [3H]WIN35428 (1x10-8 M) 186 [3H]paroxetine (2x10-10 M), [3H]citalopram (5x10-9 M)
Stoichiometry 1 noradrenaline: 1 Na+:1 Cl-171 1 dopamine: 1–2 Na+: 1 Cl-170 1 5-HT:1 Na+:1 Cl- (in), + 1 K+ (out) 197

Comments

[125I]RTI55 labels all three monoamine transporters (NET, DAT and SERT) with affinities between 0.5 and 5 nM. cocaine is an inhibitor of all three transporters with pKi values between 6.5 and 7.2. Potential alternative splicing sites in non-coding regions of SERT and NET have been identified. A bacterial homologue of SERT shows allosteric modulation by selected anti-depressants 194.

GABA transporter subfamily

Overview

The activity of GABA-transporters located predominantly upon neurones (GAT-1), glia (GAT-3) or both (GAT-2, BGT-1) serves to terminate phasic GABA-ergic transmission, maintain low ambient extracellular concentrations of GABA, and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of GABA are sufficient to sustain tonic inhibition mediated by high affinity GABAA receptors in certain neuronal populations 192. GAT1 is the predominant GABA transporter in the brain and occurs primarily upon the terminals of presynaptic neurones and to a much lesser extent upon distal astocytic processes that are in proximity to axons terminals. GAT3 resides predominantly on distal astrocytic terminals that are close to the GABAergic synapse. By contrast, BGT1 occupies an extrasynaptic location possibly along with GAT2 which has limited expression in the brain 181. TauT is a high affinity taurine transporter involved in osmotic balance that occurs in the brain and non-neuronal tissues, such as the kidney, brush border membrane of the intestine and blood brain barrier 156,172. CT1, which transports creatine, has a ubiquitous expression pattern, often co-localizing with creatine kinase 156.

Nomenclature GAT1 GAT2 GAT3 BGT1 TauT CT1
Systematic nomenclature SLC6A1 SLC6A13 SLC6A11 SLC6A12 SLC6A6 SLC6A8
HGNC, UniProt SLC6A1, P30531 SLC6A13, Q9NSD5 SLC6A11, P48066 SLC6A12, P48065 SLC6A6, P31641 SLC6A8, P48029
Endogenous substrates GABA GABA, β-alanine GABA, β-alanine GABA, betaine GABA 145, β-alanine, taurine creatine
Substrates nipecotic acid, guvacine nipecotic acid, guvacine nipecotic acid, guvacine
Selective inhibitors (pIC50) SKF89976A (6.9), CI-966 (6.6), NNC-711 (5.9 – 6.9), tiagabine (5.6 – 7.0), LU32-176B (5.4), (R/S) EF-1500 (4.9 – 5.7), (R)-EF-1520 (5.05 – 5.4), (S)-EF-1520 (3.6 – 3.92) SNAP-5114 (5.2), SNAP-5114 (4.7) NNC052090 (5.6), (R/S) EF-1500 (4.9), (R)-EF-1520 (3.74 – 4.66), (S)-EF-1520 (3.6 – 4.47), LU32-176B (4.0)
Radioligands (Kd) [3H]tiagabine
Stoichiometry 2Na+: 1Cl-: 1GABA 2Na+: 1Cl-:1GABA ≥ 2Na+: 2 Cl-: 1GABA 3Na+: 1 (or 2) Cl-: 1GABA 2Na+: 1Cl-: 1 taurine Probably 2Na+: 1Cl-: 1 creatine

Comments

The IC50 values for GAT1-4 reported in the table reflect the range reported in the literature from studies of both human and mouse transporters. There is a tendency towards lower IC50 values for the human orthologue 180. SNAP-5114 is only weakly selective for GAT 2 and GAT3, with IC50 values in the range 22 to >30 μM at GAT1 and BGT1, whereas NNC052090 has at least an order of magnitude selectivity for BGT1 [see 157,191 for reviews]. (R)-(1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}pyrrolidin-2-yl)acetic acid is a recently described compound that displays 20-fold selectivity for GAT3 over GAT1 165. In addition to the inhibitors listed, EGYT3886 is a moderately potent, though non-selective, inhibitor of all cloned GABA transporters (IC50 = 26-46 μM; 160). Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine that potently inhibit the uptake of [3H]GABA into rat synaptosomes have been described 178. Several derivatives of exo-THPO (e.g. N-methyl-exo-THPO and N-acetyloxyethyl-exo-THPO) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of GABA [see 157,190 for reviews]. GAT3 is inhibited by physiologically relevant concentrations of Zn2+ 158. TauT transports GABA, but with low affinity, but CT1 does not, although it can be engineered to do so by mutagenesis guided by LeuT as a structural template 161. Although inhibitors of creatine transport by CT1 (e.g. β-guanidinopropionic acid, cyclocreatine, guanidinoethane sulfonic acid) are known (e.g. 159) they insufficiently characterized to be included in the table.

Glycine transporter subfamily

Overview

Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 (a,b,c,d & e) differing in their N- and C-termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 (a,b & c) have also been identified (see 148,163,167,196 for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic glycine concentrations influencing NMDA receptor-mediated neurotransmission 147,166, but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses 168. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycinergic signalling and die within the first postnatal day 168,199. Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action 207. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission 169,188. Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week 169 and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by 173). ATB0+ (SLCA14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity 156. ATB0+ is expressed in various peripheral tissues 156. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of L-proline.

Nomenclature Glycine transporter 1 Glycine transporter 2 ATB0,+ Proline transporter
Systematic nomenclature SLC6A9 SLC6A5 SLC6A14 SLC6A7
Common abbreviation GlyT1 GlyT2 ATB0,+ PROT
HGNC, UniProt SLC6A9, P48067 SLC6A5, Q9Y345 SLC6A14, Q9UN76 SLC6A7, Q99884
Endogenous substrates glycine, sarcosine glycine L-isoleucine > L-leucine, L-methionine > L-phenylalanine > L-tryptophan > L-valine > L-serine 195, β-alanine 144,145 L-proline
Substrates 1-methyltryptophan 177, BCH, valganciclovir 200, zwitterionic or cationic NOS inhibitors 174
Selective inhibitors (pIC50) (R)-NFPS (8.5 – 9.1), SSR-103800 (8.7), N-methyl-SSR504734 (8.6), LY2365109 (7.8), GSK931145 (7.6) ALX 1393, ALX 1405, Org 25543 (7.7) α-methyl-D,L-tryptophan (3.6) 177 LP-403812 (7.0) 208
Radioligands (Kd) [3H](R)-NPTS (1x10-9 M), [3H]GSK931145 (1.7x10-9 M), [35S]ACPPB (2x10-9 M), [3H]SB-733993 (2.2x10-9 M), [3H]N-methyl-SSR504734 (3.3x10-9 – 8.1x10-9 M), [3H]NFPS (7x10-9 – 2.1x10-8 M)
Stoichiometry 2 Na+: 1 Cl-: 1 glycine 3 Na+: 1 Cl-: 1 glycine 2-3 Na+: 1 Cl-: 1 amino acid 195 Probably 2 Na+: 1 Cl-: 1 L-proline
Comment N-Oleoyl-L-carnitine (0.3μM, 155) and and N-arachidonoylglycine (IC50 5-8 μM, 204) have been described as potential endogenous selective GlyT2 inhibitors

Comments

sarcosine is a selective transportable inhibitor of GlyT1 and also a weak agonist at the glycine binding site of the NMDA receptor 210, but has no effect on GlyT2. This difference has been attributed to a single glycine residue in TM6 (serine residue in GlyT2) 202. Inhibition of GLYT1 by the sarcosine derivatives NFPS, NPTS and Org 24598 is non-competitive 182,183. IC50 values for Org 24598 reported in the literature vary, most likely due to differences in assay conditions 149,182. The tricyclic antidepressant amoxapine weakly inhibits GlyT2 (IC50 92 μM) with approximately 10-fold selectivity over GlyT1 184. The endogenous lipids arachidonic acid and anandamide exert opposing effects upon GlyT1a, inhibiting (IC50 ∼ 2 μM) and potentiating (EC50 ∼ 13 μM) transport currents, respectively 185. N-arachidonyl-glycine, N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-D-alanine have been described as endogenous non-competitive inhibitors of GlyT2a, but not GlyT1b 162,175,204. Protons 146 and Zn2+176 act as non-competitive inhibitors of GlyT1b, with IC50 values of ∼100 nM and ∼10 μM respectively, but neither ion affects GlyT2 (reviewed by 201). Glycine transport by GLYT1 is inhibited by lithium, whereas GLYT2 transport is stimulated (both in the presence of Na+) 187.

Neutral amino acid transporter subfamily

Overview

Certain members of neutral amino acid transport family are expressed upon the apical surface of epithelial cells and are important for the absorption of amino acids from the duodenum, jejunum and ileum and their reabsorption within the proximal tubule of the nephron (i.e. B0AT1 (SLC6A19), SLC6A17, SLC6A18, SLC6A20). Others may function as transporters for neurotransmitters or their precursors (i.e. B0AT2, SLC6A17) 153.

Nomenclature B0AT1 B0AT2 B0AT3 NTT5 NTT4 SIT1
Systematic nomenclature SLC6A19 SLC6A15 SLC6A18 SLC6A16 SLC6A17 SLC6A20
HGNC, UniProt SLC6A19, Q695T7 SLC6A15, Q9H2J7 SLC6A18, Q96N87 SLC6A16, Q9GZN6 SLC6A17, Q9H1V8 SLC6A20, Q9NP91
Endogenous substrates L-leucine, L-methionine, L-isoleucine, L-valine > L-asparagine, L-phenylalanine, L-alanine, L-serine > L-threonine, glycine, L-proline 152 L-proline > L-alanine, L-valine, L-methionine, L-leucine > L-isoleucine, L-threonine, L-asparagine, L-serine, L-phenylalanine > glycine 152 L-alanine, glycine > L-methionine, L-phenylalanine, L-leucine, L-histidine, L-glutamine 203 L-leucine, L-methionine, L-proline > L-cysteine, L-alanine, L-glutamine, L-serine > L-histidine, glycine 209 L-proline
Stoichiometry 1 Na+: 1 amino acid 154 1 Na+: 1 amino acid 151 Na+- and Cl- -dependent transport 193 Na+-dependent, Cl--independent transport 209 2 Na+: 1 Cl-: 1 imino acid 150
Comment Mutations in B0AT1 are associated with Hartnup disorder

SLC8 family of sodium/calcium exchangers

Overview

The sodium/calcium exchangers (NCX) use the extracellular sodium concentration to facilitate the extrusion of calcium out of the cell. Alongside the plasma membrane Ca2+-ATPase (PMCA) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), as well as the sodium/potassium/calcium exchangers (NKCX, SLC24 family), NCX allow recovery of intracellular calcium back to basal levels after cellular stimulation. When intracellular sodium ion levels rise, for example, following depolarisation, these transporters can operate in the reverse direction to allow calcium influx and sodium efflux, as an electrogenic mechanism. Structural modelling suggests the presence of 9 TM segments, with a large intracellular loop between the fifth and sixth TM segments.

Nomenclature Sodium/calcium exchanger 1 Sodium/calcium exchanger 2 Sodium/calcium exchanger 3
Systematic nomenclature SLC8A1 SLC8A2 SLC8A3
Common abbreviation NCX1 NCX2 NCX3
HGNC, UniProt SLC8A1, P32418 SLC8A2, Q9UPR5 SLC8A3, P57103
Stoichiometry 3 Na+ (in): 1 Ca2+ (out) or 4 Na+ (in): 1 Ca2+ (out) 211; Reverse mode 1 Ca2+ (in): 1 Na+ (out)

Comments

Although subtype-selective inhibitors of NCX function are not widely available, 3,4–dichlorobenzamil and CBDMB act as non-selective NCX inhibitors, while SEA0400, KB-R7943, SN6 and ORM-10103 212 act to inhibit NCX function selectively.

SLC9 family of sodium/hydrogen exchangers

Overview

Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Na+ (in): 1 H+ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellular membranes 215217. Li+ and NH4+, but not K+, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C-terminus containing multiple regulatory sites.

NHE1 is considered to be a ubiquitously-expressed ‘housekeeping’ transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm 220 and osteoclasts 214; gene disruption results in infertile male mice 220.

Nomenclature Systematic nomenclature Common abbreviation HGNC, UniProt
Sodium/hydrogen exchanger 1 SLC9A1 NHE1 SLC9A1, P19634
Sodium/hydrogen exchanger 2 SLC9A2 NHE2 SLC9A2, Q9UBY0
Sodium/hydrogen exchanger 3 SLC9A3 NHE3 SLC9A3, P48764
Sodium/hydrogen exchanger 4 SLC9A4 NHE4 SLC9A4, Q6AI14
Sodium/hydrogen exchanger 5 SLC9A5 NHE5 SLC9A5, Q14940
Sodium/hydrogen exchanger 6 SLC9A6 NHE6 SLC9A6, Q92581
Sodium/hydrogen exchanger 7 SLC9A7 NHE7 SLC9A7, Q96T83
Sodium/hydrogen exchanger 8 SLC9A8 NHE8 SLC9A8, Q9Y2E8
Sodium/hydrogen exchanger 9 SLC9A9 NHE9 SLC9A9, Q8IVB4
solute carrier family 9, subfamily B (NHA1, cation proton antiporter 1), member 1 SLC9B1 NHA1 SLC9B1, Q4ZJI4
solute carrier family 9, subfamily B (NHA2, cation proton antiporter 2), member 2 SLC9B2 NHA2 SLC9B2, Q86UD5
Sodium/hydrogen exchanger 10 SLC9C1 Sperm-NHE SLC9C1, Q4G0N8
Sodium/hydrogen exchanger 11 SLC9C2 NHE11 SLC9C2, Q5TAH2

Comments

Analogues of the non-selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Na+ binding site. The more selective amiloride analogues MPA and EIPA exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 213,218,219.

SLC10 family of sodium-bile acid co-transporters

Overview

The SLC10 family transport bile acids, sulphated solutes, and other xenobiotics in a sodium-dependent manner. The founding members, SLC10A1 (NTCP) and SLC10A2 (ASBT) function, along with members of the ABC transporter family (MDR1/ABCB1, BSEP/ABCB11 and MRP2/ABCC2) and the organic solute transporter obligate heterodimer OSTα:OSTβ (SLC51), to maintain the enterohepatic circulation of bile acids 225,234. SLC10A6 (SOAT) functions as a sodium-dependent transporter of sulphated solutes included sulfphated steroids and bile acids 228,230. Transport function has not yet been demonstrated for the 4 remaining members of the SLC10 family, SLC10A3 (P3), SLC10A4 (P4), SLC10A5 (P5), and SLC10A7 (P7), and the identity of their endogenous substrates remain unknown 227,230,231,237. Members of the SLC10 family are predicted to have seven transmembrane domains with an extracellular N-terminus and cytoplasmic C-terminus 221,232.

Nomenclature Sodium/bile acid and sulphated solute cotransporter 1 Sodium/bile acid and sulphated solute cotransporter 2 Sodium/bile acid and sulphated solute cotransporter 6
Systematic nomenclature SLC10A1 SLC10A2 SLC10A6
Common abbreviation NTCP ASBT SOAT
HGNC, UniProt SLC10A1, Q14973 SLC10A2, Q12908 SLC10A6, Q3KNW5
Substrates tauroursodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid > GCA > cholic acid 235 GDCA > GUDCA, GCDA > taurocholic acid > cholic acid 224 pregnenolone sulphate 228, dehydroepiandrosterone sulphate 230, taurolithocholic acid-3-sulphate, estrone-3-sulphate
Endogenous substrates T3, dehydroepiandrosterone sulphate 224,227,235, estrone-3-sulphate, iodothyronine sulphates
Radioligands (Kd) [3H]taurocholic acid 224
Stoichiometry 2 Na+: 1 bile acid 221,228 >1 Na+: 1 bile acid 224,238
Comment chenodeoxycholyl-Nε-nitrobenzoxadiazol-lysine is a fluorescent bile acid analogue used as a probe 229.
Inhibitors (pIC50) cyclosporin A 226,233, irbesartan 226, propranolol 224 SC-435 (8.82) 222, 264W94 (7.32) 236,239
Nomenclature Sodium/bile acid and sulphated solute cotransporter 3 Sodium/bile acid and sulphated solute cotransporter 4 Sodium/bile acid and sulphated solute cotransporter 5 Sodium/bile acid and sulphated solute cotransporter 7
Systematic nomenclature SLC10A3 SLC10A4 SLC10A5 SLC10A7
Common abbreviation P3 P4 P5 P7
HGNC, UniProt SLC10A3, P09131 SLC10A4, Q96EP9 SLC10A5, Q5PT55 SLC10A7, Q0GE19

Comments

Heterologously expressed SLC10A4 229 or SLC10A7 231 failed to exhibit significant transport of taurocholic acid, pregnenolone sulphate, DHEAS or choline. SLC10A4 has recently been suggested to associate with neuronal vesicles 223.

SLC11 family of proton-coupled metal ion transporters

Overview

The family of proton-coupled metal ion transporters are responsible for movements of divalent cations, particularly ferrous and manganese ions, across the cell membrane (SLC11A2/DMT1) and across endosomal (SLC11A2/DMT1) or lysosomal/phagosomal membranes (SLC11A1/NRAMP1), dependent on proton transport. Both proteins appear to have 12 TM regions and cytoplasmic N- and C- termini. NRAMP1 is involved in antimicrobial action in macrophages, although its precise mechanism is undefined. Facilitated diffusion of divalent cations into phagosomes may increase intravesicular free radicals to damage the pathogen. Alternatively, export of divalent cations from the phagosome may deprive the pathogen of essential enzyme cofactors. SLC11A1/DMT1 is more widely expressed and appears to assist in divalent cation assimilation from the diet, as well as in phagocytotic cells.

Nomenclature NRAMP1 DMT1
Systematic nomenclature SLC11A1 SLC11A2
HGNC, UniProt SLC11A1, P49279 SLC11A2, P49281
Endogenous substrates Fe2+, Mn2+ Cd2+, Co2+, Cu2+, Fe2+, Mn2+
Stoichiometry 1 H+: 1 Fe2+ (out) or 1 Fe2+ (in): 1 H+ (out) 1 H+: 1 Fe2+ (out) 240

Comments

Loss-of-function mutations in NRAMP1 are associated with increased susceptibility to microbial infection (OMIM: 607948). Loss-of-function mutations in DMT1 are associated with microcytic anemia (OMIM: 206100).

SLC12 family of cation-coupled chloride transporters

Overview

The SLC12 family of chloride transporters contribute to ion fluxes across a variety of tissues, particularly in the kidney and choroid plexus of the brain. Within this family, further subfamilies are identifiable: NKCC1, NKCC2 and NCC constitute a group of therapeutically-relevant transporters, targets for loop and thiazide diuretics. These 12 TM proteins exhibit cytoplasmic termini and an extended extracellular loop at TM7/8 and are kidney-specific (NKCC2 and NCC) or show a more widespread distribution (NKCC1). A second family, the K-Cl co-transporters are also 12 TM domain proteins with cytoplasmic termini, but with an extended extracellular loop at TM 5/6. CCC6 exhibits structural similarities with the K-Cl co-transporters, while CCC9 is divergent, with 11 TM domains and a cytoplasmic N-terminus and extracellular C-terminus.

Nomenclature Kidney-specific Na-K-Cl symporter Basolateral Na-K-Cl symporter Na-Cl symporter
Systematic nomenclature SLC12A1 SLC12A2 SLC12A3
Common abbreviation NKCC2 NKCC1 NCC
HGNC, UniProt SLC12A1, Q13621 SLC12A2, P55011 SLC12A3, P55017
Inhibitors (pIC50) bumetanide 242, furosemide 242, piretanide 242 bumetanide 242, furosemide 242, piretanide 242 chlorothiazide, hydrochlorothiazide, metolazone
Stoichiometry 1 Na+: 1 K+: 2 Cl- (in) 1 Na+: 1 K+: 2 Cl- (in) 1 Na+: 1 Cl- (in)
Nomenclature K-Cl cotransporter 1 K-Cl cotransporter 2 K-Cl cotransporter 3 K-Cl cotransporter 4
Systematic nomenclature SLC12A4 SLC12A5 SLC12A6 SLC12A7
Common abbreviation KCC1 KCC2 KCC3 KCC4
HGNC, UniProt SLC12A4, Q9UP95 SLC12A5, Q9H2X9 SLC12A6, Q9UHW9 SLC12A7, Q9Y666
Inhibitors (pIC50) DIOA DIOA, VU0240551 241 DIOA DIOA
Stoichiometry 1 K+: 1 Cl- (out) 1 K+: 1 Cl- (out) 1 K+: 1 Cl- (out) 1 K+: 1 Cl- (out)
Nomenclature Cation-chloride cotransporter 9 Cation-chloride cotransporter 6
Systematic nomenclature SLC12A8 SLC12A9
Common abbreviation CCC9 CCC6
HGNC, UniProt SLC12A8, A0AV02 SLC12A9, Q9BXP2
Substrates spermine, L-glutamic acid, spermidine, L-aspartic acid
Stoichiometry Unknown
Comment CCC6 is regarded as an orphan transporter

Comments

DIOA is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR 243.

SLC13 family of sodium-dependent sulphate/carboxylate transporters

Overview

Within the SLC13 family, two groups of transporters may be differentiated on the basis of the substrates transported: NaS1 and NaS2 convey sulphate, while NaC1-3 transport carboxylates. NaS1 and NaS2 transporters are made up of 13 TM domains, with an intracellular N terminus and are electrogenic with physiological roles in the intestine, kidney and placenta. NaC1, NaC2 and NaC3 are made up of 11 TM domains with an intracellular N terminus and are electrogenic, with physiological roles in the kidney and liver.

Nomenclature Na+/sulfate cotransporter Na+/dicarboxylate cotransporter 1 Na+/dicarboxylate cotransporter 3 Na+/sulfate cotransporter Na+/citrate cotransporter
Systematic nomenclature SLC13A1 SLC13A2 SLC13A3 SLC13A4 SLC13A5
Common abbreviation NaS1 NaC1 NaC3 NaS2 NaC2
HGNC, UniProt SLC13A1, Q9BZW2 SLC13A2, Q13183 SLC13A3, Q8WWT9 SLC13A4, Q9UKG4 SLC13A5, Q86YT5
Endogenous substrates SeO42-, S2O32-, SO42- citric acid, succinic acid citric acid, succinic acid SO42- citric acid, pyruvic acid
Stoichiometry 3 Na+: 1 SO42- (in) 3 Na+: 1 dicarboxylate2- (in) Unknown 3 Na+: SO42- (in) Unknown

SLC14 family of facilitative urea transporters

Overview

As a product of protein catabolism, urea is moved around the body and through the kidneys for excretion. Although there is experimental evidence for concentrative urea transporters, these have not been defined at the molecular level. The SLC14 family are facilitative transporters, allowing urea movement down its concentration gradient. Multiple splice variants of these transporters have been identified; for UT-A transporters, in particular, there is evidence for cell-specific expression of these variants with functional impact 245. Topographical modelling suggests that the majority of the variants of SLC14 transporters have 10 TM domains, with a glycosylated extracellular loop at TM5/6, and intracellular C- and N-termini. The UT-A1 splice variant, exceptionally, has 20 TM domains, equivalent to a combination of the UT-A2 and UT-A3 splice variants.

Nomenclature Erythrocyte urea transporter Kidney urea transporter
Systematic nomenclature SLC14A1 SLC14A2
Common abbreviation UT-B UT-A
HGNC, UniProt SLC14A1, Q13336 SLC14A2, Q15849
Endogenous substrates ammonium carbonate 246, urea 246, formamide 246 urea 244
Substrates acrylamide 246, acetamide 246, methylurea 246
Stoichiometry Equilibrative Equilibrative

SLC15 family of peptide transporters

Overview

The SLC15 family of peptide transporters may be divided on the basis of structural and functional differences into two subfamilies: SLC15A1 (PepT1) and SLC15A2 (PepT2) transport di- and tripeptides, but not amino acids, whereas SLC15A3 (PHT2) and SLC15A4 (PHT1) transport L-histidine and some di- and tripeptides 251. The transporters are 12 TM proteins with intracellular termini and an extended extracellular loop at TM 9/10. The crystal structure of PepTSo (a prokaryote homologue of PepT1 and PepT2 from Shewanella oneidensis) confirms many of the predicted structural features of mammalian PepT1 and PepT2 261.

PHT1 has been suggested to be intracellular 262, while PHT2 protein is located on lysosomes in transfected cells 250,257,264. PHT1 is hypothesised to mediate efflux of bacterial-derived peptides into the cytosol perhaps in the colon where SLC15A4 mRNA expression is increased in inflammatory bowel disease 259. Transport via PHT1 may be important in immune responses as both Toll-like receptor- and NOD1-mediated responses are reduced in PHT1 knockout mice or mouse strains expressing mutations in PHT1 249,265.

Nomenclature Peptide transporter 1 Peptide transporter 2 Peptide transporter 3 Peptide transporter 4
Systematic nomenclature SLC15A1 SLC15A2 SLC15A3 SLC15A4
Common abbreviation PepT1 PepT2 PHT2 PHT1
HGNC, UniProt SLC15A1, P46059 SLC15A2, Q16348 SLC15A3, Q8IY34 SLC15A4, Q8N697
Endogenous substrates 5-aminolevulinic acid 253, dipeptides 253, tripeptides 253 5-aminolevulinic acid, dipeptides, tripeptides L-histidine, carnosine, dipeptides, tripeptides L-histidine, carnosine, dipeptides, tripeptides
Substrates fMet-Leu-Phe 260, cyclacillin 254, valacyclovir 255, cefadroxil 254, muramyl dipeptide 268 cyclacillin 254, cefadroxil 254 valacyclovir 247
Inhibitors (pIC50) 4-AMBA 252, Lys[Z(NO2)]-Pro 258 Lys[Z(NO2)]-Lys[Z(NO2)] 248,267, Lys[Z(NO2)]-Pro
Radioligands (Kd) [11C]GlySar, [14C]GlySar, [3H]GlySar [11C]GlySar, [14C]GlySar, [3H]GlySar [14C]histidine, [3H]histidine [14C]histidine, [3H]histidine
Stoichiometry 1 H+: 1 zwitterionic peptide (in) 2 H+: 1 zwitterionic peptide (in) Unknown Unknown

Comments

The PepT1 and PepT2 transporters are particularly promiscuous in the transport of dipeptides and tripeptides from the endogenous amino acids, as well as some D-amino acid containing peptides. PepT1 has also been exploited to allow delivery of therapeutic pro-drugs, such as those for zidovudine 256, sulpiride 269 and cytarabine 266.

D-Ala-Lys-AMCA has been used as a fluorescent probe to identify transport via both PepT1 and PepT2 263.

SLC16 family of monocarboxylate transporters

Overview

Members of the SLC16 family may be divided into subfamilies on the basis of substrate selectivities, particularly lactate (e.g. L-lactic acid), pyruvic acid and ketone bodies, as well as aromatic amino acids. Topology modelling suggests 12 TM domains, with intracellular termini and an extended loop at TM 6/7.

The proton-coupled monocarboxylate transporters (monocarboxylate transporters 1, 4, 2 and 3) allow transport of the products of cellular metabolism, principally lactate (e.g. L-lactic acid) and pyruvic acid.

Nomenclature Monocarboxylate transporter 1 Monocarboxylate transporter 4 Monocarboxylate transporter 2 Monocarboxylate transporter 3
Systematic nomenclature SLC16A1 SLC16A3 SLC16A7 SLC16A8
Common abbreviation MCT1 MCT4 MCT2 MCT3
HGNC, UniProt SLC16A1, P53985 SLC16A3, O15427 SLC16A7, O60669 SLC16A8, O95907
Endogenous substrates β-D-hydroxybutyric acid, L-lactic acid, pyruvic acid L-lactic acid, pyruvic acid L-lactic acid, pyruvic acid L-lactic acid
Substrates γ-hydroxybutyric acid 272
Stoichiometry 1 H+: 1 monocarboxylate- (out) 1 H+: 1 monocarboxylate- (out) 1 H+: 1 monocarboxylate- (out) 1 H+: 1 monocarboxylate- (out)
Nomenclature Monocarboxylate transporter 8 Monocarboxylate transporter 10
Systematic nomenclature SLC16A2 SLC16A10
Common abbreviation MCT8 TAT1
HGNC, UniProt SLC16A2, P36021 SLC16A10, Q8TF71
Endogenous substrates T3 270, T4 270 L-tryptophan, L-phenylalanine, L-DOPA, L-tyrosine
Stoichiometry Unknown Unknown
Nomenclature Monocarboxylate transporter 5 Monocarboxylate transporter 6 Monocarboxylate transporter 7 Monocarboxylate transporter 9 Monocarboxylate transporter 11 Monocarboxylate transporter 12 Monocarboxylate transporter 13 Monocarboxylate transporter 14
Systematic nomenclature SLC16A4 SLC16A5 SLC16A6 SLC16A9 SLC16A11 SLC16A12 SLC16A13 SLC16A14
Common abbreviation MCT5 MCT6 MCT7 MCT9 MCT11 MCT12 MCT13 MCT14
HGNC, UniProt SLC16A4, O15374 SLC16A5, O15375 SLC16A6, O15403 SLC16A9, Q7RTY1 SLC16A11, Q8NCK7 SLC16A12, Q6ZSM3 SLC16A13, Q7RTY0 SLC16A14, Q7RTX9
Stoichiometry Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown
Comment MCT6 has been reported to transport bumetanide, but not short chain fatty acids 271

Comments

MCT1 and MCT2, but not MCT3 and MCT4, are inhibited by CHC, which also inhibits members of the mitochondrial transporter family, SLC25.

MCT5-MCT7, MCT9 and MCT11-14 are regarded as orphan transporters.

SLC17 phosphate and organic anion transporter family

Overview

The SLC17 family are sometimes referred to as Type I sodium-phosphate co-transporters, alongside Type II (SLC34 family) and Type III (SLC20 family) transporters. Within the SLC17 family, however, further subgroups of organic anion transporters may be defined, allowing the accumulation of sialic acid in the endoplasmic reticulum and glutamate (e.g. L-glutamic acid) or nucleotides in synaptic and secretory vesicles. Topology modelling suggests 12 TM domains.

Type I sodium-phosphate co-transporters

Overview

Type I sodium-phosphate co-transporters are expressed in the kidney and intestine.

Nomenclature Sodium/phosphate cotransporter 1 Sodium/phosphate cotransporter 3 Sodium/phosphate cotransporter 4 Sodium/phosphate cotransporter homolog
Systematic nomenclature SLC17A1 SLC17A2 SLC17A3 SLC17A4
Common abbreviation NPT1 NPT3 NPT4
HGNC, UniProt SLC17A1, Q14916 SLC17A2, O00624 SLC17A3, O00476 SLC17A4, Q9Y2C5
Substrates Cl- 275, probenecid 274, PO34- 275, uric acid 275, penicillin G 274, organic acids 275
Stoichiometry Unknown Unknown Unknown Unknown

Sialic acid transporter

Overview

The sialic acid transporter is expressed on both lysosomes and synaptic vesicles, where it appears to allow export of sialic acid and accumulation of acidic amino acids, respectively 277, driven by proton gradients. In lysosomes, degradation of glycoproteins generates amino acids and sugar residues, which are metabolized further following export from the lysosome.

Nomenclature Sialin
Systematic nomenclature SLC17A5
Common abbreviation AST
HGNC, UniProt SLC17A5, Q9NRA2
Endogenous substrates L-glutamic acid (in) 277, L-lactic acid, L-aspartic acid 277, gluconate (out), sialic acid, glucuronic acid
Stoichiometry 1 H+: 1 sialic acid (out)

Comments

Loss-of-function mutations in sialin are associated with Salla disease (OMIM: 604369), an autosomal recessive neurodegenerative disorder associated with sialic acid storage disease 279.

Vesicular glutamate transporters (VGLUTs)

Overview

Vesicular glutamate transporters (VGLUTs) allow accumulation of glutamate into synaptic vesicles, as well as secretory vesicles in endocrine tissues. The roles of VGLUTs in kidney and liver are unclear. These transporters appear to utilize the proton gradient and also express a chloride conductance 273.

Nomenclature Vesicular glutamate transporter 1 Vesicular glutamate transporter 2 Vesicular glutamate transporter 3
Systematic nomenclature SLC17A7 SLC17A6 SLC17A8
Common abbreviation VGLUT1 VGLUT2 VGLUT3
HGNC, UniProt SLC17A7, Q9P2U7 SLC17A6, Q9P2U8 SLC17A8, Q8NDX2
Endogenous substrates L-glutamic acid > D-glutamic acid L-glutamic acid > D-glutamic acid L-glutamic acid > D-glutamic acid
Stoichiometry Unknown Unknown Unknown

Comments

Endogenous ketoacids produced during fasting have been proposed to regulate VGLUT function through blocking chloride ion-mediated allosteric enhancement of transporter function 276.

Vesicular nucleotide transporter

Overview

The vesicular nucleotide transporter is the most recent member of the SLC17 family to have an assigned function. Uptake of ATP was independent of pH, but dependent on chloride ions and membrane potential 278.

Nomenclature Vesicular nucleotide transporter
Systematic nomenclature SLC17A9
Common abbreviation VNUT
HGNC, UniProt SLC17A9, Q9BYT1
Endogenous substrates ATP 278, GTP 278, GDP 278
Stoichiometry Unknown

Comments

VGLUTs and VNUT can be inhibited by DIDS and evans blue dye.

SLC18 family of vesicular amine transporters

Overview

The vesicular amine transporters (VATs) are putative 12 TM domain proteins that function to transport singly positively charged amine neurotransmitters and hormones from the cytoplasm and concentrate them within secretory vesicles. They function as amine/proton antiporters driven by secondary active transport utilizing the proton gradient established by a multi-subunit vacuolar ATPase that acidifies secretory vesicles (reviewed by 283). The vesicular acetylcholine transporter (VAChT; 287) localizes to cholinergic neurons, but non-neuronal expression has also been claimed 290. Vesicular monoamine transporter 1 (VMAT1, 285) is mainly expressed in peripheral neuroendocrine cells, but most likely not in the CNS, whereas VMAT2 286 distributes between both central and peripheral sympathetic monoaminergic neurones 284.

Nomenclature Vesicular monoamine transporter 1 Vesicular monoamine transporter 2 Vesicular acetylcholine transporter solute carrier family 18, subfamily B, member 1
Systematic nomenclature SLC18A1 SLC18A2 SLC18A3 SLC18B1
Common abbreviation VMAT1 VMAT2 VAChT
HGNC, UniProt SLC18A1, P54219 SLC18A2, Q05940 SLC18A3, Q16572 SLC18B1, Q6NT16
Endogenous substrates 5-HT (Ki 1.4x10-6 M) 286, (-)-adrenaline (Ki 5.5x10-6 M) 286, (-)-noradrenaline (Ki 1.37x10-5 M) 286, dopamine (Ki 3.8x10-6 M) 286, histamine (Ki 4.696x10-3 M) 286 5-HT (Ki 9x10-7 M) 286, (-)-adrenaline (Ki 1.9x10-6 M) 286, (-)-noradrenaline (Ki 3.4x10-6 M) 286, dopamine (Ki 1.4x10-6 M) 286, histamine (Ki 1.43x10-4 M) 286 acetylcholine (Ki 7.94x10-4 M) 280,288, choline (Ki 5x10-4 M) 280,288
Substrates β-phenylethylamine (Ki 3.4x10-5 M) 286, dextroamphetamine (Ki 4.7x10-5 M) 286, MPP+ (Ki 6.9x10-5 M) 286, MDMA (Ki 1.9x10-5 M) 286, fenfluramine (Ki 3.1x10-6 M) 286 β-phenylethylamine (Ki 3.7x10-6 M) 286, dextroamphetamine (Ki 2.1x10-6 M) 286, MPP+ (Ki 8.9x10-6 M) 286, MDMA (Ki 6.9x10-6 M) 286, fenfluramine (Ki 5.1x10-6 M) 286 TPP+ 281, ethidium 281, N-methyl-pyridinium-2-aldoxime 281, N-(4′-pentanonyl)-4-(4″-dimethylamino-styryl)pyridinium 281
Inhibitors (pIC50) reserpine (pKi 7.45) 286, ketanserin (pKi 5.8) 286, tetrabenazine (pKi 4.7) 286 reserpine (pKi 7.9) 286, tetrabenazine (pKi 7.0) 286, ketanserin (pKi 6.3) 286 aminobenzovesamicol (pKi 10.9) 282, vesamicol (pKi 8.7) 282
Radioligands (Kd) [11C]DTBZ, [125I]8-azido-3-iodoketanserine, [3H]TBZOH (6.6x10-9 M) 291, [125I]iodovinyl-TBZ (8.2x10-9 M) 289 [123I]iodobenzovesamicol, [3H]vesamicol (4.1x10-9 M) 291
Stoichiometry 1 amine (in): 2H+ (out) 1 amine (in): 2H+ (out) 1 amine (in): 2H+ (out)

Comments

pKi values for endogenous and synthetic substrate inhibitors of human VMAT1 and VMAT2 are for inhibition of [3H]5-HT uptake in transfected and permeabilised CV-1 cells as detailed by 286. In addition to the monoamines listed in the table, the trace amines tyramine and β-phenylethylamine are probable substrates for VMAT2 284. Probes listed in the table are those currently employed; additional agents have been synthesized (e.g.292).

SLC19 family of vitamin transporters

Overview

The B vitamins folic acid and thiamine are transported across the cell membrane, particularly in the intestine, kidneys and placenta, using pH differences as driving forces. Topological modelling suggests the transporters have 12 TM domains.

Nomenclature Reduced folate transporter 1 Thiamine transporter 1 Thiamine transporter 2
Systematic nomenclature SLC19A1 SLC19A2 SLC19A3
Common abbreviation FOLT ThTr1 ThTr2
HGNC, UniProt SLC19A1, P41440 SLC19A2, O60779 SLC19A3, Q9BZV2
Endogenous substrates thiamine monophosphate 298, tetrahydrofolic acid 296, N5-methylfolate 296, Organic phosphates; in particular, adenine nucleotides, Other tetrahydrofolate-cofactors thiamine thiamine
Substrates folic acid 296, methotrexate, folinic acid, N5-formyltetrahydrofolate
Radioligands (Kd) [3H]folic acid 293, [3H]methotrexate 293 [3H]thiamine 295 [3H]thiamine 297
Stoichiometry Folate (in): organic phosphate (out), precise stoichiometry unknown A facilitative carrier not known to be coupled to an inorganic or organic ion gradient A facilitative carrier not known to be coupled to an inorganic or organic ion gradient

Comments

Loss-of-function mutations in ThTr1 underlie thiamine-responsive megaloblastic anemia syndrome 294.

SLC20 family of sodium-dependent phosphate transporters

Overview

The SLC20 family is looked upon not only as ion transporters, but also as retroviral receptors. As ion transporters, they are sometimes referred to as Type III sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type II (SLC34 family). PiTs are cell-surface transporters, composed of ten TM domains with extracellular C- and N-termini. PiT1 is a focus for dietary PO34- and vitamin D regulation of parathyroid hormone secretion from the parathyroid gland. PiT2 appears to be involved in intestinal absorption of dietary PO34-.

Nomenclature Sodium-dependent phosphate transporter 1 Sodium-dependent phosphate transporter 2
Systematic nomenclature SLC20A1 SLC20A2
Common abbreviation PiT1 PiT2
HGNC, UniProt SLC20A1, Q8WUM9 SLC20A2, Q08357
Substrates AsO43− 299, PO34- 299 PO34- 299
Stoichiometry >1 Na+: 1 HPO42- (in) >1 Na+: 1 HPO42- (in)

SLC22 family of organic cation and anion transporters

Overview

The SLC22 family of transporters is mostly composed of non-selective transporters, which are expressed highly in liver, kidney and intestine, playing a major role in drug disposition. The family may be divided into three subfamilies based on the nature of the substrate transported: organic cations (OCTs), organic anions (OATs) and organic zwiterrion/cations (OCTN). Membrane topology is predicted to contain 12 TM domains with intracellular termini, and an extended extracellular loop at TM 1/2.

Organic cation transporters (OCT)

Overview

Organic cation transporters (OCT) are electrogenic, Na+-independent and reversible.

Nomenclature Organic cation transporter 1 Organic cation transporter 2 Organic cation transporter 3
Systematic nomenclature SLC22A1 SLC22A2 SLC22A3
Common abbreviation OCT1 OCT2 OCT3
HGNC, UniProt SLC22A1, O15245 SLC22A2, O15244 SLC22A3, O75751
Endogenous substrates 5-HT, PGE2, PGF2α, choline dopamine 303, histamine 303, PGE2 304 5-HT 307, (-)-noradrenaline 307, dopamine 307
Substrates tetraethylammonium, desipramine, MPP+, metformin, acyclovir (+)-tubocurarine 302, tetraethylammonium 302, pancuronium 302, MPP+ 302 quinidine, tetraethylammonium, MPP+
Stoichiometry Unknown Unknown Unknown
Comments

corticosterone and quinine are able to inhibit all three organic cation transporters.

Organic zwitterions/cation transporters (OCTN)

Overview

Organic zwitterions/cation transporters (OCTN) function as organic cation uniporters, organic cation/proton exchangers or sodium/L-carnitine co-transporters.

Nomenclature Organic cation/carnitine transporter 1 Organic cation/carnitine transporter 2 Carnitine transporter 2
Systematic nomenclature SLC22A4 SLC22A5 SLC22A16
Common abbreviation OCTN1 OCTN2 CT2
HGNC, UniProt SLC22A4, Q9H015 SLC22A5, O76082 SLC22A16, Q86VW1
Endogenous substrates L-carnitine acetyl-L-carnitine, L-carnitine L-carnitine
Substrates pyrilamine, tetraethylammonium, verapamil, MPP+ pyrilamine, tetraethylammonium, verapamil, MPP+
Stoichiometry Unknown Unknown Unknown

Organic anion transporters (OATs)

Overview

Organic anion transporters (OATs) are non-selective transporters prominent in the kidney and intestine.

Nomenclature Organic anion transporter 1 Organic anion transporter 2 Organic anion transporter 3 Organic anion transporter 7 Organic anion transporter 5 Organic anion transporter 4
Systematic nomenclature SLC22A6 SLC22A7 SLC22A8 SLC22A9 SLC22A10 SLC22A11
Common abbreviation OAT1 OAT2 OAT3 OAT4 OAT5
HGNC, UniProt SLC22A6, Q4U2R8 SLC22A7, Q9Y694 SLC22A8, Q8TCC7 SLC22A9, Q8IVM8 SLC22A10, Q63ZE4 SLC22A11, Q9NSA0
Substrates aminohippuric acid, non-steroidal anti-inflammatory drugs PGE2, aminohippuric acid, non-steroidal anti-inflammatory drugs cimetidine 305, ochratoxin A 305, estrone-3-sulphate 305, aminohippuric acid 305 ochratoxin A 306 dehydroepiandrosterone sulphate 300, ochratoxin A 300, estrone-3-sulphate 300
Stoichiometry Unknown Unknown Unknown Unknown Unknown Unknown

Urate transporter

Nomenclature Urate anion exchanger 1
Systematic nomenclature SLC22A12
Common abbreviation URAT1
HGNC, UniProt SLC22A12, Q96S37
Endogenous substrates orotic acid 301, uric acid 301
Stoichiometry Unknown

Orphan or poorly characterized SLC22 family members

Nomenclature Systematic nomenclature Common abbreviation HGNC, UniProt
Organic cation transporter-like 3 SLC22A13 ORCTL3 SLC22A13, Q9Y226
Organic cation transporter-like 4 SLC22A14 ORCTL4 SLC22A14, Q9Y267
Fly-like putative transporter 1 SLC22A15 FLIPT1 SLC22A15, Q8IZD6
Brain-type organic cation transporter SLC22A17 BOIT SLC22A17, Q8WUG5
Organic cation transporter-like 2 SLC22A18 ORCTL2 SLC22A18, Q96BI1
OAT6 SLC22A20 SLC22A20, A6NK97
SLC22A23 SLC22A23, A1A5C7
SLC22A24 SLC22A24, Q8N4F4
UST6 SLC22A25 SLC22A25, Q6T423
solute carrier family 22, member 31 SLC22A31 SLC22A31, A6NKX4

SLC23 family of ascorbic acid transporters

Overview

Predicted to be 12 TM segment proteins, members of this family transport the reduced form of ascorbic acid (while the oxidized form may be handled by members of the SLC2 family (GLUT1/SLC2A1, GLUT3/SLC2A3 and GLUT4/SLC2A4). phloretin is considered a non-selective inhibitor of these transporters, with an affinity in the micromolar range.

Nomenclature Sodium-dependent vitamin C transporter 1 Sodium-dependent vitamin C transporter 2 Sodium-dependent vitamin C transporter 3 Sodium-dependent nucleobase transporter
Systematic nomenclature SLC23A1 SLC23A2 SLC23A3 SLC23A4
Common abbreviation SVCT1 SVCT2 SVCT3 SNBT1
HGNC, UniProt SLC23A1, Q9UHI7 SLC23A2, Q9UGH3 SLC23A3, Q6PIS1 SLC23A4P, –
Endogenous substrates L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid 308 L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid 308 uracil > thymine > guanine, hypoxanthine > xanthine, uridine 309
Substrates
Inhibitors (pIC50) phloretin 308 5-fluorouracil 309
Radioligands (Kd) [14C]ascorbic acid [14C]ascorbic acid
Stoichiometry 2 Na+: 1 ascorbic acid (in) 308 2 Na+: 1 ascorbic acid (in) 308 1 Na+: 1 uracil (in) 309
Comment SLC23A3 does not transport ascorbic acid and remains an orphan transporter. SLC23A4/SNBT1 is found in rodents and non-human primates, but the sequence is truncated in the human genome and named as a pseudogene, SLC23A4P

SLC24 family of sodium/potassium/calcium exchangers

Overview

The sodium/potassium/calcium exchange family of transporters utilize the extracellular sodium gradient to drive calcium and potassium co-transport out of the cell. As is the case for NCX transporters (SLC8A family), NKCX transporters are thought to be bidirectional, with the possibility of calcium influx following depolarization of the plasma membrane. Topological modeling suggests the presence of 10 TM domains, with a large intracellular loop between the fifth and sixth TM regions.

Nomenclature Sodium/potassium/calcium exchanger 1 Sodium/potassium/calcium exchanger 2 Sodium/potassium/calcium exchanger 3 Sodium/potassium/calcium exchanger 4 Sodium/potassium/calcium exchanger 5 Sodium/potassium/calcium exchanger 6
Systematic nomenclature SLC24A1 SLC24A2 SLC24A3 SLC24A4 SLC24A5 SLC24A6
Common abbreviation NKCX1 NKCX2 NKCX3 NKCX4 NKCX5 NKCX6
HGNC, UniProt SLC24A1, O60721 SLC24A2, Q9UI40 SLC24A3, Q9HC58 SLC24A4, Q8NFF2 SLC24A5, Q71RS6 SLC8B1, Q6J4K2
Stoichiometry 4Na+:(1Ca2+ + 1K+)

Comments

NKCX6 exhibits sufficient structural diversity for its function as a NKCX to be questioned 310.

To date, there are no agents selective for this family of transporters.

SLC25 family of mitochondrial transporters

Overview

Mitochondrial transporters are nuclear-encoded proteins, which convey solutes across the inner mitochondrial membrane. Topological modelling suggests homodimeric transporters, each with six TM segments and termini in the cytosol.

Mitochondrial di- and tri-carboxylic acid transporter subfamily

Overview

Mitochondrial di- and tri-carboxylic acid transporters are grouped on the basis of commonality of substrates and include the citrate transporter which facilitates citric acid export from the mitochondria to allow the generation of oxalacetic acid and acetyl CoA through the action of ATP:citrate lyase.

Nomenclature Mitochondrial citrate transporter Mitochondrial dicarboxylate transporter Mitochondrial oxoglutarate carrier Mitochondrial oxodicarboxylate carrier
Systematic nomenclature SLC25A1 SLC25A10 SLC25A11 SLC25A21 SLC25A34 SLC25A35
Common abbreviation CIC DIC OGC ODC
HGNC, UniProt SLC25A1, P53007 SLC25A10, Q9UBX3 SLC25A11, Q02978 SLC25A21, Q9BQT8 SLC25A34, Q6PIV7 SLC25A35, Q3KQZ1
Substrates citric acid, malic acid, PEP malic acid, succinic acid, PO34-, S2O32-, SO42- malic acid, α-ketoglutaric acid α-ketoglutaric acid, α-oxoadipic acid
Inhibitors (pIC50) 1,2,3-benzenetricarboxylic acid
Stoichiometry Malate2- (in): H-citrate2- (out) PO34- (in): malate2- (out) Malate2- (in): oxoglutarate2- (out) Oxoadipate (in): oxoglutarate (out)

Mitochondrial amino acid transporter subfamily

Overview

Mitochondrial amino acid transporters can be subdivided on the basis of their substrates. Mitochondrial ornithine transporters play a role in the urea cycle by exchanging cytosolic ornithine (L-ornithine and D-ornithine) for mitochondrial citrulline (L-citrulline and D-citrulline) in equimolar amounts. Further members of the family include transporters of S-adenosylmethionine and carnitine.

Nomenclature Mitochondrial glutamate carrier 1 Mitochondrial glutamate carrier 2 AGC1 AGC2
Systematic nomenclature SLC25A22 SLC25A18 SLC25A12 SLC25A13
Common abbreviation GC1 GC2 AGC1 AGC2
HGNC, UniProt SLC25A22, Q9H936 SLC25A18, Q9H1K4 SLC25A12, O75746 SLC25A13, Q9UJS0
Substrates L-glutamic acid L-glutamic acid L-glutamic acid, L-aspartic acid, 2-amino-3-sulfinopropanoic acid L-glutamic acid, L-aspartic acid, 2-amino-3-sulfinopropanoic acid
Stoichiometry Glutamate: H+ (bidirectional) Glutamate: H+ (bidirectional) Aspartate: glutamate H+ (bidirectional) Aspartate: glutamate H+ (bidirectional)
Nomenclature Mitochondrial ornithine transporter 1 Mitochondrial ornithine transporter 2 Carnitine/acylcarnitine carrier
Systematic nomenclature SLC25A15 SLC25A2 SLC25A20
Common abbreviation ORC1 ORC2 CAC
HGNC, UniProt SLC25A15, Q9Y619 SLC25A2, Q9BXI2 SLC25A20, O43772
Substrates L-arginine 311, L-citrulline 311, L-lysine 311, L-ornithine 311 L-arginine 311, L-citrulline 311, L-lysine 311, L-ornithine 311, L-histidine 311, D-histidine 311, D-arginine 311, D-lysine 311, D-ornithine 311, D-citrulline 311
Stoichiometry 1 Ornithine (in) :1 citrulline: 1 H+ (out) 1 Ornithine (in) :1 citrulline: 1 H+ (out)
Comment Exchanges cytosolic acylcarnitine for mitochondrial carnitine
Nomenclature solute carrier family 25, member 47 solute carrier family 25, member 48 ORNT3 CGI-69 MCFP
Systematic nomenclature SLC25A47 SLC25A48 SLC25A29 SLC25A38 SLC25A39 SLC25A40 SLC25A44 SLC25A45
Common abbreviation ORNT3
HGNC, UniProt SLC25A47, Q6Q0C1 SLC25A48, Q6ZT89 SLC25A29, Q8N8R3 SLC25A38, Q96DW6 SLC25A39, Q9BZJ4 SLC25A40, Q8TBP6 SLC25A44, Q96H78 SLC25A45, Q8N413

Comments

Both ornithine transporters are inhibited by the polyamine spermine 312. Loss-of-function mutations in these genes are associated with hyperornithinemia-hyperammonemia-homocitrullinuria.

Mitochondrial phosphate transporters

Overview

Mitochondrial phosphate transporters allow the import of inorganic PO34- for ATP production.

Nomenclature Mitochondrial phosphate carrier
Systematic nomenclature SLC25A3
Common abbreviation PHC
HGNC, UniProt SLC25A3, Q00325
Stoichiometry PO34- (in): OH- (out) or PO34-: H+ (in)

Mitochondrial nucleotide transporter subfamily

Overview

Mitochondrial nucleotide transporters, defined by structural similarlities, include the adenine nucleotide translocator family (SLC25A4, SLC25A5, SLC25A6 and SLC25A31), which under conditions of aerobic metabolism, allow coupling between mitochondrial oxidative phosphorylation and cytosolic energy consumption by exchanging cytosolic ADP for mitochondrial ATP. Further members of the mitochondrial nucleotide transporter subfamily convey diverse substrates including CoA, although not all members have had substrates identified.

Nomenclature Mitochondrial adenine nucleotide translocator 1 Mitochondrial adenine nucleotide translocator 2 Mitochondrial adenine nucleotide translocator 3 Mitochondrial adenine nucleotide translocator 4
Systematic nomenclature SLC25A4 SLC25A5 SLC25A6 SLC25A31 SLC25A42
Common abbreviation ANT1 ANT2 ANT3 ANT4
HGNC, UniProt SLC25A4, P12235 SLC25A5, P05141 SLC25A6, P12236 SLC25A31, Q9H0C2 SLC25A42, Q86VD7
Inhibitors (pIC50) BKA, CATR
Stoichiometry ADP3- (in): ATP4- (out) ADP3- (in): ATP4- (out) ADP3- (in): ATP4- (out) ADP3- (in): ATP4- (out)
Substrates ADP
Nomenclature Graves disease carrier Peroxisomal membrane protein Deoxynucleotide carrier 1 S-Adenosylmethionine carrier
Systematic nomenclature SLC25A16 SLC25A17 SLC25A19 SLC25A26
Common abbreviation GDC PMP34 DNC SAMC1
HGNC, UniProt SLC25A16, P16260 SLC25A17, O43808 SLC25A19, Q9HC21 SLC25A26, Q70HW3
Substrates CoA and congeners ADP, ATP, AMP Deoxynucleotide Diphosphates (dNDPs), Deoxynucleotide Triphosphates (dNTPs), Dideoxynucleotide Triphosphates (ddNTPs), Nucleotide Diphosphates (NDPs) S-adenosyl methionine
Stoichiometry CoA (in) ATP (in) dNDP (in): ATP (out)
Nomenclature Mitochondrial phosphate carrier 1 Mitochondrial phosphate carrier 2 Mitochondrial phosphate carrier 3 MFT PNC1 SCaMC-3L
Systematic nomenclature SLC25A24 SLC25A23 SLC25A25 SLC25A32 SLC25A33 SLC25A36 SLC25A41 SLC25A43
Common abbreviation APC1 APC2 APC3 MFTC PNC2
HGNC, UniProt SLC25A24, Q6NUK1 SLC25A23, Q9BV35 SLC25A25, Q6KCM7 SLC25A32, Q9H2D1 SLC25A33, Q9BSK2 SLC25A36, Q96CQ1 SLC25A41, Q8N5S1 SLC25A43, Q8WUT9

Mitochondrial uncoupling proteins

Overview

Mitochondrial uncoupling proteins allow dissipation of the mitochondrial proton gradient associated with thermogenesis and regulation of radical formation.

Nomenclature Uncoupling protein 1 Uncoupling protein 2 Uncoupling protein 3
Systematic nomenclature SLC25A7 SLC25A8 SLC25A9
Common abbreviation UCP1 UCP2 UCP3
HGNC, UniProt UCP1, P25874 UCP2, P55851 UCP3, P55916
Stoichiometry H+ (in) H+ (in) H+ (in)
Nomenclature Uncoupling protein 4 Uncoupling protein 5 KMCP1
Systematic nomenclature SLC25A27 SLC25A14 SLC25A30
Common abbreviation UCP4 UCP5
HGNC, UniProt SLC25A27, O95847 SLC25A14, O95258 SLC25A30, Q5SVS4
Stoichiometry H+ (in) H+ (in)

Miscellaneous SLC25 mitochondrial transporters

Overview

Many of the transporters identified below have yet to be assigned functions and are currently regarded as orphans.

Nomenclature mitochondrial carrier 1 mitochondrial carrier 2 Mitoferrin1 Mitoferrin2
Systematic nomenclature SLC25A49 SLC25A50 SLC25A37 SLC25A28
HGNC, UniProt MTCH1, Q9NZJ7 MTCH2, Q9Y6C9 SLC25A37, Q9NYZ2 SLC25A28, Q96A46
Nomenclature solute carrier family 25, member 51 solute carrier family 25, member 52 solute carrier family 25, member 53
Systematic nomenclature SLC25A51 SLC25A52 SLC25A53 SLC25A46
HGNC, UniProt SLC25A51, Q9H1U9 SLC25A52, Q3SY17 SLC25A53, Q5H9E4 SLC25A46, Q96AG3

SLC26 family of anion exchangers

Overview

Along with the SLC4 family, the SLC26 family acts to allow movement of monovalent and divalent anions across cell membranes. The predicted topology is of 10–14 TM domains with intracellular C- and N-termini, probably existing as dimers. Within the family, subgroups may be identified on the basis of functional differences, which appear to function as anion exchangers and anion channels (SLC26A7 and SLC26A9).

Selective sulphate transporters

Nomenclature Sat-1 DTDST
Systematic nomenclature SLC26A1 SLC26A2
HGNC, UniProt SLC26A1, Q9H2B4 SLC26A2, P50443
Substrates SO42-, oxalate SO42-
Stoichiometry SO42- (in): anion (out) 1 SO42- (in): 2 Cl- (out)

Chloride/bicarbonate exchangers

Nomenclature DRA Pendrin PAT-1
Systematic nomenclature SLC26A3 SLC26A4 SLC26A6
HGNC, UniProt SLC26A3, P40879 SLC26A4, O43511 SLC26A6, Q9BXS9
Substrates Cl- Cl-, HCO3-, formate, I-, OH- Cl-, HCO3-, SO42-, oxalate, formate, I-, OH-
Stoichiometry 2 Cl- (in): 1 HCO3- (out) or 2 Cl- (in): 1 OH- (out) Unknown 1 SO42- (in): 2 HCO3- (out) or 1 Cl- (in): 2 HCO3- (out)

Anion channels

Systematic nomenclature SLC26A7 SLC26A9
HGNC, UniProt SLC26A7, Q8TE54 SLC26A9, Q7LBE3
Substrates NO3- >> Cl- = Br- = I- > SO42- = L-glutamic acid I- > Br- > NO3- > Cl- > L-glutamic acid
Functional characteristics Voltage- and time-independent current, linear I-V relationship 315 Voltage- and time-independent current, linear I-V relationship 314
Comment SLC26A9 has been suggested to operate in two additional modes as a Cl--HCO3- exchanger and as a Na+-anion cotransporter 313

Other SLC26 anion exchangers

Nomenclature Prestin Tat1 KBAT
Systematic nomenclature SLC26A5 SLC26A8 SLC26A10 SLC26A11
Common abbreviation KBAT
HGNC, UniProt SLC26A5, P58743 SLC26A8, Q96RN1 SLC26A10, Q8NG04 SLC26A11, Q86WA9
Substrates Cl-, HCO3- Cl-, SO42-, oxalate HSO4-
Stoichiometry Unknown Unknown Unknown Unknown
Comment Prestin has been suggested to function as a molecular motor, rather than a transporter SLC26A10 is a possible pseudogene

SLC27 family of fatty acid transporters

Overview

Fatty acid transporter proteins (FATPs) are a family (SLC27) of six transporters (FATP1-6). They have at least one, and possibly six 319,325, transmembrane segments, and are predicted on the basis of structural similarities to form dimers. SLC27 members have several structural domains: integral membrane associated domain, peripheral membrane associated domain, FATP signature, intracellular AMP binding motif, dimerization domain, lipocalin motif, and an ER localization domain (identified in FATP4 only) 317,322,323. These transporters are unusual in that they appear to express intrinsic very long-chain acyl-CoA synthetase (EC 6.2.1.-, EC 6.2.1.7) enzyme activity. Within the cell, these transporters may associate with plasma and peroxisomal membranes. FATP1-4 and -6 transport long- and very long-chain fatty acids, while FATP5 transports long-chain fatty acids as well as bile acids 321,325.

Nomenclature Fatty acid transport protein 1 Fatty acid transport protein 2 Fatty acid transport protein 3 Fatty acid transport protein 4 Fatty acid transport protein 5 Fatty acid transport protein 6
Systematic nomenclature SLC27A1 SLC27A2 SLC27A3 SLC27A4 SLC27A5 SLC27A6
Common abbreviation FATP1 FATP2 FATP3 FATP4 FATP5 FATP6
HGNC, UniProt SLC27A1, Q6PCB7 SLC27A2, O14975 SLC27A3, Q5K4L6 SLC27A4, Q6P1M0 SLC27A5, Q9Y2P5 SLC27A6, Q9Y2P4
Endogenous substrates arachidonic acid > palmitic acid > oleic acid > butyric acid 325, palmitic acid > oleic acid > γ-linolenic acid > octanoic acid 318 palmitic acid > oleic acid > butyric acid, γ-linolenic acid > arachidonic acid 326, palmitic acid, oleic acid > γ-linolenic acid > octanoic acid 318 palmitic acid > oleic acid > γ-linolenic acid > octanoic acid 318
Comment FATP4 is genetically linked to restrictive dermopathy

Comments

Although the stoichiometry of fatty acid transport is unclear, it has been proposed to be facilitated by the coupling of fatty acid transport to conjugation with coenzyme A to form fatty acyl CoA esters. Small molecule inhibitors of FATP2 320,324 and FATP4 316,327, as well as bile acid inhibitors of FATP5 327, have been described; analysis of the mechanism of action of some of these inhibitors suggests that transport may be selectively inhibited without altering enzymatic activity of the FATP.

C1-BODIPY-C12 accumulation has been used as a non-selective index of fatty acid transporter activity.

FATP2 has two variants: Variant 1 encodes the full-length protein, while Variant 2 encodes a shorter isoform missing an internal protein segment. FATP6 also has two variants: Variant 2 encodes the same protein as Variant 1 but has an additional segment in the 5' UTR.

SLC28 and SLC29 families of nucleoside transporters

Overview

Nucleoside transporters are divided into two families, the sodium-dependent, solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29), where the endogenous substrates are nucleosides.

SLC28 family

Overview

SLC28 family members have 13 TM segments with cytoplasmic N-termini and extracellular C-termini.

Nomenclature CNT1 CNT2 CNT3
Systematic nomenclature SLC28A1 SLC28A2 SLC28A3
Common abbreviation CNT1 CNT2 CNT3
HGNC, UniProt SLC28A1, O00337 SLC28A2, O43868 SLC28A3, Q9HAS3
Endogenous substrates adenosine, uridine, thymidine, cytidine adenosine, inosine, guanosine, thymidine adenosine, inosine, uridine, guanosine, thymidine, cytidine
Substrates gemcitabine, zidovudine, zalcitabine formycin B, cladribine, fludarabine, vidarabine, didanosine 5-fluorouridine, zebularine, formycin B, gemcitabine, cladribine, floxuridine, zidovudine, zalcitabine, didanosine
Stoichiometry 1 Na+: 1 nucleoside (in) 1 Na+: 1 nucleoside (in) 2 Na+: 1 nucleoside (in)

Comments

A further two Na+-dependent (stoichiometry 1 Na+: 1 nucleoside (in)) nucleoside transporters have been defined on the basis of substrate and inhibitor selectivity: CNT4 (N4/cit, which transports uridine, thymidine and guanosine) and CNT5 (N5/csg, which transports guanosine and adenosine, and may be inhibited by NBTI).

SLC29 family

Overview

SLC29 family members appear to be composed of 11 TM segments with cytoplasmic N-termini and extracellular C-termini. ENT1 and ENT2 are cell-surface transporters, while ENT3 is intracellular, possibly lysosomal 328. ENT1-3 are described as broad-spectrum nucleoside transporters.

Nomenclature Equilibrative nucleoside transporter 1 Equilibrative nucleoside transporter 2 Equilibrative nucleoside transporter 3 Plasma membrane monoamine transporter
Systematic nomenclature SLC29A1 SLC29A2 SLC29A3 SLC29A4
Common abbreviation ENT1 ENT2 ENT3 PMAT
HGNC, UniProt SLC29A1, Q99808 SLC29A2, Q14542 SLC29A3, Q9BZD2 SLC29A4, Q7RTT9
Endogenous substrates adenosine 335, inosine 335, hypoxanthine 335, uridine 335, guanosine 335, thymine 335, thymidine 335, cytidine 335, adenine 335 adenosine, inosine, hypoxanthine, uridine, guanosine, thymidine adenosine 328, inosine 328, uridine 328, guanosine 328, thymidine 328, adenine 328 5-HT 329, dopamine 329, histamine 329, tyramine 329
Substrates 2-chloroadenosine, formycin B, tubercidin, gemcitabine, cladribine, floxuridine, pentostatin, vidarabine, cytarabine, zalcitabine, didanosine 2-chloroadenosine, formycin B, tubercidin, gemcitabine, cladribine, vidarabine, zidovudine, cytarabine cordycepin 328, zebularine 328, tubercidin 328, cladribine 328, floxuridine 328, fludarabine 328, zidovudine 328, zalcitabine 328, didanosine 328 tetraethylammonium 329, MPP+ 329
Inhibitors (pIC50) NBTI (pKi 9.7), draflazine (pKi 9.5), KF24345 (pKi 9.4) 330, NBTGR (pKi 9.3), dilazep (pKi 9.0), dipyridamole (pKi 8.5) cimetidine 329, quinidine 329, quinine 329, rhodamine123 329, verapamil 329
Radioligands (Kd) [3H]NBTI (5x10-10 M)
Stoichiometry Equilibrative Equilibrative Equilibrative Equilibrative
Comment ENT1 has 100-1000-fold lower affinity for nucleobases as compared with nucleosides 335., The affinities of draflazine, dilazep, KF24345 and dipyridamole at ENT1 transporters are species dependent, exhibiting lower affinity at rat transporters than at human transporters 330,333., The loss of ENT1 activity in ENT1-null mice has been associated with a hypermineralization disorder similar to human diffuse idiopathic skeletal hyperostosis 334 Defects in SLC29A3 have been implicated in Histiocytosis-lymphadenopathy plus syndrome (OMIM:602782) and lysosomal storage diseases 331,332

SLC30 zinc transporter family

Overview

Along with the SLC39 family, SLC30 transporters regulate the movement of zinc ions around the cell. In particular, these transporters remove zinc ions from the cytosol, allowing accumulation into intracellular compartments or efflux through the plasma membrane. ZnT1 is thought to be placed on the plasma membrane extruding zinc, while ZnT3 is associated with synaptic vesicles and ZnT4 and ZnT5 are linked with secretory granules. Membrane topology predictions suggest a multimeric assembly, potentially heteromultimeric 337, with subunits having six TM domains, and both termini being cytoplasmic. Dityrosine covalent linking has been suggested as a mechanism for dimerisation, particularly for ZnT3 336. The mechanism for zinc transport is unknown.

Nomenclature Systematic nomenclature Common abbreviation HGNC, UniProt
Zinc transporter 1 SLC30A1 ZnT1 SLC30A1, Q9Y6M5
Zinc transporter 2 SLC30A2 ZnT2 SLC30A2, Q9BRI3
Zinc transporter 3 SLC30A3 ZnT3 SLC30A3, Q99726
Zinc transporter 4 SLC30A4 ZnT4 SLC30A4, O14863
Zinc transporter 5 SLC30A5 ZnT5 SLC30A5, Q8TAD4
Zinc transporter 6 SLC30A6 ZnT6 SLC30A6, Q6NXT4
Zinc transporter 7 SLC30A7 ZnT7 SLC30A7, Q8NEW0
Zinc transporter 8 SLC30A8 ZnT8 SLC30A8, Q8IWU4
Zinc transporter 9 SLC30A9 ZnT9 SLC30A9, Q6PML9
Zinc transporter 10 SLC30A10 ZnT10 SLC30A10, Q6XR72

Comments

ZnT8/SLC30A8 is described as a type 1 diabetes susceptibility gene.

Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3.

SLC31 family of copper transporters

Overview

SLC31 family members, alongside the Cu-ATPases are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell-surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter 341. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N-terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy-independent 340.

Nomenclature Copper transporter 1 Copper transporter 2
Systematic nomenclature SLC31A1 SLC31A2
Common abbreviation CTR1 CTR2
HGNC, UniProt SLC31A1, O15431 SLC31A2, O15432
Endogenous substrates copper 340 copper
Substrates cisplatin 339 cisplatin 338
Stoichiometry Unknown Unknown

Comments

Copper accumulation through CTR1 is sensitive to silver ions, but not divalent cations 340.

SLC32 vesicular inhibitory amino acid transporter

Overview

The vesicular inhibitory amino acid transporter, VIAAT (also termed the vesicular GABA transporter VGAT), which is the sole representative of the SLC32 family, transports GABA, or glycine, into synaptic vesicles 343,344, and is a member of the structurally-defined amino acid-polyamine-organocation/APC clan composed of SLC32, SLC36 and SLC38 transporter families (see 349). VIAAT was originally suggested to be composed of 10 TM segments with cytoplasmic N- and C-termini 347. However, an alternative 9TM structure with the N terminus facing the cytoplasm and the C terminus residing in the synaptic vesicle lumen has subsequently been reported 346. VIAAT acts as an antiporter for inhibitory amino acids and protons. The accumulation of GABA and glycine within vesicles is driven by both the chemical (ΔpH) and electrical (Δψ) components of the proton electrochemical gradient (ΔμH+) established by a vacuolar H+-ATPase 347. However, one study, 345, presented evidence that VIAAT is instead a Cl-/GABA co-transporter. VIAAT co-exists with VGLUT1 (SLC17A7), or VGLUT2 (SLC17A6), in the synaptic vesicles of selected nerve terminals 342,351. VIAAT knock out mice die between embryonic day 18.5 and birth 350. In cultures of spinal cord neurones established from earlier embryos, the co-release of of GABA and glycine from synaptic vesicles is drastically reduced, providing direct evidence for the role of VIAAT in the sequestration of both transmitters 348,350.

Nomenclature Vesicular inhibitory amino acid transporter
Systematic nomenclature SLC32A1
Common abbreviation VIAAT
HGNC, UniProt SLC32A1, Q9H598
Endogenous substrates glycine, β-alanine, γ-hydroxybutyric acid, GABA (Km 5x10-3 M) 347
Inhibitors (pIC50) vigabatrin (2.1) 347
Stoichiometry 1 amino acid (in): 1 H+ (out) 344 or 1 amino acid: 2Cl- (in) 345

SLC33 acetylCoA transporter

Overview

Acetylation of proteins is a post-translational modification mediated by specific acetyltransferases, using the donor acetyl CoA. SLC33A1/AT1 is a putative 11 TM transporter present on the endoplasmic reticulum, expressed in all tissues, but particularly abundant in the pancreas 353, which imports cytosolic acetyl CoA into these intracellular organelles.

Nomenclature AcetylCoA transporter
Systematic nomenclature SLC33A1
Common abbreviation ACATN1
HGNC, UniProt SLC33A1, O00400
Endogenous substrates acetyl CoA
Radioligands (Kd) [14C]acetylCoA
Stoichiometry Unknown

Comments

In heterologous expression studies, acetyl CoA transport through AT1 was inhibited by coenzyme A, but not acetic acid, ATP or UDP-galactose 352. A loss-of-function mutation in ACATN1/SLC33A1 has been associated with spastic paraplegia (SPG42, 354), although this observation could not be replicated in a subsequent study 355.

SLC34 family of sodium phosphate co-transporters

Overview

The SLC34 family are sometimes referred to as Type II sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type III (SLC20 family) transporters. Topological modelling suggests eight TM domains with C- and N- termini in the cytoplasm, and a re-entrant loop at TM7/8. SLC34 family members are expressed on the apical surfaces of epithelia in the intestine and kidneys to regulate body phosphate levels, principally NaPi-IIa and NaPi-IIb, respectively. NaPi-IIa and NaPi-IIb are electrogenic, while NaPiIIc is electroneutral 356.

Nomenclature Sodium phosphate 1 Sodium phosphate 2 Sodium phosphate 3
Systematic nomenclature SLC34A1 SLC34A2 SLC34A3
Common abbreviation NaPi-IIa NaPi-IIb NaPi-IIc
HGNC, UniProt SLC34A1, Q06495 SLC34A2, O95436 SLC34A3, Q8N130
Stoichiometry 3 Na+: 1 HPO42- (in) 357 3 Na+: 1 HPO42- (in) 356 2 Na+: 1 HPO42- (in) 356

Comments

These transporters can be inhibited by PFA, in contrast to type III sodium-phosphate cotransporters, the SLC20 family.

SLC35 family of nucleotide sugar transporters

Overview

Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide-conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swopping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SL35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1-4 and SLC35F1-5.

Nomenclature CMP-sialic acid transporter UDP-galactose transporter UDP-N-acetylglucosamine transporter MGC2541 FLJ11130
Systematic nomenclature SLC35A1 SLC35A2 SLC35A3 SLC35A4 SLC35A5
HGNC, UniProt SLC35A1, P78382 SLC35A2, P78381 SLC35A3, Q9Y2D2 SLC35A4, Q96G79 SLC35A5, Q9BS91
Substrates CMP-sialic acid 359 UDP N-acetyl-glucosamine 361,366, UDP-galactose 361,366 UDP N-acetyl-glucosamine 362
Nomenclature UGTREL1 PAPS transporter 1 PAPS transporter 2 YEA
Systematic nomenclature SLC35B1 SLC35B2 SLC35B3 SLC35B4
HGNC, UniProt SLC35B1, P78383 SLC35B2, Q8TB61 SLC35B3, Q9H1N7 SLC35B4, Q969S0
Substrates A3P5PS 364 A3P5PS 363 UDP N-acetyl-glucosamine 358, UDP-xylose 358
Nomenclature GDP-Fucose transporter OVCOV1 UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter HFRC1 FRCL1
Systematic nomenclature SLC35C1 SLC35C2 SLC35D1 SLC35D2 SLC35D3
HGNC, UniProt SLC35C1, Q96A29 SLC35C2, Q9NQQ7 SLC35D1, Q9NTN3 SLC35D2, Q76EJ3 SLC35D3, Q5M8T2
Substrates GDP-fucose 365 UDP-glucuronic acid 367, UDP-N-acetylgalactosamine 367 UDP-N-acetylgalactosamine 360
Nomenclature solute carrier family 35, member E2B
Systematic nomenclature SLC35E1 SLC35E2 SLC35E2B SLC35E3 SLC35E4
HGNC, UniProt SLC35E1, Q96K37 SLC35E2, P0CK97 SLC35E2B, P0CK96 SLC35E3, Q7Z769 SLC35E4, Q6ICL7
Comment Orphan transporter Orphan transporter Orphan transporter Orphan transporter
Nomenclature solute carrier family 35, member F6
Systematic nomenclature SLC35F1 SLC35F2 SLC35F3 SLC35F4 SLC35F5 SLC35F6
HGNC, UniProt SLC35F1, Q5T1Q4 SLC35F2, Q8IXU6 SLC35F3, Q8IY50 SLC35F4, A4IF30 SLC35F5, Q8WV83 SLC35F6, Q8N357
Comment Orphan transporter Orphan transporter Orphan transporter Orphan transporter Orphan transporter
Nomenclature solute carrier family 35, member G1 solute carrier family 35, member G3 solute carrier family 35, member G4 solute carrier family 35, member G5 solute carrier family 35, member G6
Systematic nomenclature SLC35G1 SLC35G3 SLC35G4 SLC35G5 SLC35G6
HGNC, UniProt SLC35G1, Q2M3R5 SLC35G3, Q8N808 SLC35G4, P0C7Q5 SLC35G5, Q96KT7 SLC35G6, P0C7Q6

SLC36 family of proton-coupled amino acid transporters

Overview

The SLC36 family of proton-coupled amino acid transporters (or PAT) is highly expressed in the intestine and kidney, having roles in the disposition of amino acids 383. PAT1 is found on the gut epithelia luminal surface accumulating dietary amino acids, and additionally in lysosomal membranes where it likely functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis 369,382. PAT2 is found at the apical membrane of the kidney proximal tubule 372. PAT1 and PAT2 are predicted to have 11 TM domains with intracellular N-termini 370,382.

Nomenclature Proton-coupled Amino acid Transporter 1 Proton-coupled Amino acid Transporter 2 Proton-coupled Amino acid Transporter 3 Proton-coupled Amino acid Transporter 4
Systematic nomenclature SLC36A1 SLC36A2 SLC36A3 SLC36A4
Common abbreviation PAT1 PAT2 PAT3 PAT4
HGNC, UniProt SLC36A1, Q7Z2H8 SLC36A2, Q495M3 SLC36A3, Q495N2 SLC36A4, Q6YBV0
Endogenous substrates L-alanine, glycine, GABA, β-alanine, taurine, L-proline, D-serine, D-cysteine, D-proline, D-alanine, trans-4-hydroxy-proline, sarcosine L-alanine, glycine, β-alanine, L-proline, trans-4-hydroxy-proline, sarcosine L-tryptophan 381, L-proline 381
Substrates THIP 378, betaine, L-azetidine-2-carboxylate 377, MeAIB 373, β-guanidinopropionic acid, THPO 379, 5-aminolevulinic acid, vigabatrin 368 L-azetidine-2-carboxylate 377, MeAIB 374
Inhibitors (pIC50) 5-hydroxy-L-tryptophan (pKi 3.0) 380, indole-3-propionic acid (pKi 2.3) 380, L-tryptophan (pKi 2.3) 380, 5-HT (pKi 2.2) 380 5-hydroxy-L-tryptophan (2.8) 375, α-methyl-D,L-tryptophan (2.5) 375
Stoichiometry 1 H+: 1 amino acid (in) 1 H+: 1 amino acid (in) Unknown Unknown
Comment [3H] or [14C] labelled substrates as listed above are used as probes [3H] or [14C] labelled substrates as listed above are used as probes

Comments

Both PAT1 and PAT2 can also function as an electroneutral transport system for H+ and fatty acids including acetic acid, propanoic acid and butyric acid 376.

Loss-of-function mutations in PAT2 lead to iminoglycinuria and hyperglycinuria in man 371.

SLC37 family of phosphosugar/phosphate exchangers

Overview

The family of sugar-phosphate exchangers pass particular phosphorylated sugars across intracellular membranes, exchanging for inorganic phosphate. Of the family of sugar phosphate transporters, most information is available on SPX4, the glucose-6-phosphate transporter. This is a 10 TM domain protein with cytoplasmic termini and is associated with the endoplasmic reticulum, with tissue-specific splice variation.

Nomenclature Glycerol-3-phosphate transporter SPX2 SPX3 Glucose-6-phosphate transporter
Systematic nomenclature SLC37A1 SLC37A2 SLC37A3 SLC37A4
Common abbreviation SPX1 SPX4
HGNC, UniProt SLC37A1, P57057 SLC37A2, Q8TED4 SLC37A3, Q8NCC5 SLC37A4, O43826
Endogenous substrates glucose 6-phosphate, glycerol 3-phosphate glucose 6-phosphate glucose 6-phosphate
Stoichiometry Glucose 6-phosphate (in): phosphate (out) 386 Glucose 6-phosphate (in): phosphate (out) 386 Unknown Glucose 6-phosphate (in): phosphate (out) 385
Comment Multiple polymorphisms have been described for the SLC37A4 gene, some of which associate with a glycogen storage disease 384

SLC38 family of sodium-dependent neutral amino acid transporters

Overview

The SLC38 family of transporters appears to be responsible for the functionally-defined system A and system N mechanisms of amino acid transport and are mostly expressed in the CNS. Two distinct subfamilies are identifiable within the SLC38 transporters. SNAT1, SNAT2 and SNAT4 appear to resemble system A transporters in accumulating neutral amino acids under the influence of the sodium gradient. SNAT3 and SNAT5 appear to resemble system N transporters in utilizing proton co-transport to accumulate amino acids. The predicted membrane topology is of 11 TM domains with an extracellular C-terminus and intracellular N-terminus 394.

System A-like transporters

Nomenclature SNAT1 SNAT2 SNAT4
Systematic nomenclature SLC38A1 SLC38A2 SLC38A4
Common abbreviation SNAT1 SNAT2 SNAT4
HGNC, UniProt SLC38A1, Q9H2H9 SLC38A2, Q96QD8 SLC38A4, Q969I6
Endogenous substrates L-alanine > L-serine, L-glutamine, L-asparagine, L-histidine, L-cysteine, L-methionine > glycine, L-threonine, L-proline, L-tyrosine, L-valine 387 L-alanine, L-methionine > L-asparagine, L-glutamine, L-serine, L-proline, glycine > L-threonine, L-leucine, L-phenylalanine 391 L-histidine > L-arginine, L-alanine, L-asparagine, L-lysine > glycine, L-glutamine, L-serine, L-proline, L-leucine, L-phenylalanine 390
Substrates MeAIB MeAIB MeAIB
Radioligands (Kd) [14C]alanine, [3H]alanine [14C]alanine, [3H]alanine [14C]alanine, [14C]glycine, [3H]alanine, [3H]glycine
Stoichiometry 1 Na+: 1 amino acid (in) 387 1 Na+: 1 amino acid (in) 391 1 Na+: 1 neutral amino acid (in) 390
Comment Transport of cationic amino acids by SNAT4 was sodium-independent 390

System N-like transporters

Nomenclature SNAT3 SNAT5
Systematic nomenclature SLC38A3 SLC38A5
Common abbreviation SNAT3 SNAT5
HGNC, UniProt SLC38A3, Q99624 SLC38A5, Q8WUX1
Endogenous substrates L-histidine, L-glutamine > L-asparagine, L-alanine > L-glutamic acid 389 L-asparagine, L-serine, L-histidine, L-glutamine > glycine, L-alanine 393
Substrates MeAIB MeAIB
Radioligands (Kd) [14C]glutamine, [3H]glutamine [14C]histidine, [3H]histidine
Stoichiometry 1 Na+: 1 amino acid (in): 1 H+ (out) 388 1 Na+: 1 amino acid (in): 1 H+ (out) 393

Orphan SLC38 transporters

Nomenclature SNAT6 SNAT7 PP1744 AVT2
Systematic nomenclature SLC38A6 SLC38A7 SLC38A8 SLC38A9 SLC38A10 SLC38A11
Common abbreviation SNAT6 SNAT7
HGNC, UniProt SLC38A6, Q8IZM9 SLC38A7, Q9NVC3 SLC38A8, A6NNN8 SLC38A9, Q8NBW4 SLC38A10, Q9HBR0 SLC38A11, Q08AI6
Comment SNAT7/SLC38A7 has been described to be a system N-like transporter allowing preferential accumulation of L-glutamine, L-histidine and L-asparagine 392

SLC39 family of metal ion transporters

Overview

Along with the SLC30 family, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co-transport of bicarbonate ions 396,397.

Nomenclature Zinc transporter 1 Zinc transporter 2 Zinc transporter 3 Zinc transporter 4 metal ion transporter 5 Zinc transporter 6 Zinc transporter 7
Systematic nomenclature SLC39A1 SLC39A2 SLC39A3 SLC39A4 SLC39A5 SLC39A6 SLC39A7
Common abbreviation ZIP1 ZIP2 ZIP3 ZIP4 ZIP5 ZIP6 ZIP7
HGNC, UniProt SLC39A1, Q9NY26 SLC39A2, Q9NP94 SLC39A3, Q9BRY0 SLC39A4, Q6P5W5 SLC39A5, Q6ZMH5 SLC39A6, Q13433 SLC39A7, Q92504
Nomenclature Zinc transporter 8 Zinc transporter 9 Zinc transporter 10 Zinc transporter 11 Zinc transporter 12 Zinc transporter 13 Zinc transporter 14
Systematic nomenclature SLC39A8 SLC39A9 SLC39A10 SLC39A11 SLC39A12 SLC39A13 SLC39A14
Common abbreviation ZIP8 ZIP9 ZIP10 ZIP11 ZIP12 ZIP13 ZIP14
HGNC, UniProt SLC39A8, Q9C0K1 SLC39A9, Q9NUM3 SLC39A10, Q9ULF5 SLC39A11, Q8N1S5 SLC39A12, Q504Y0 SLC39A13, Q96H72 SLC39A14, Q15043
Substrates Cd2+ 395,397 Cd2+ 396, Fe2+398, Mn2+396
Stoichiometry 1 Zn2+ (in): 2 HCO3- (in) 397

Comments

Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3.

The bicarbonate transport inhibitor DIDS has been reported to inhibit cation accumulation through ZIP14 396.

SLC40 iron transporter

Overview

Alongside the SLC11 family of proton-coupled metal transporters, ferroportin allows the accumulation of iron from the diet. Whilst SLC11A2 functions on the apical membrane, ferroportin acts on the basolateral side of the enterocyte, as well as regulating macrophage and placental iron levels. The predicted topology is of 12 TM domains, with intracellular termini 403, with the functional transporter potentially a dimeric arrangement 399,400.

Nomenclature Ferroportin
Systematic nomenclature SLC40A1
Common abbreviation IREG1
HGNC, UniProt SLC40A1, Q9NP59
Endogenous substrates Fe2+
Stoichiometry Unknown

Comments

Hepcidin (HAMP, P81172), cleaved into hepcidin-25 (HAMP, P81172) and hepcidin-20 (HAMP, P81173), is a small protein that increases upon inflammation, binds to ferroportin to regulate its cellular distribution and degradation. Gene disruption in mice results in embryonic lethality 402, while loss-of-function mutations in man are associated with haemochromatosis 401.

SLC41 family of divalent cation transporters

Overview

By analogy with bacterial orthologues, this family is probably magnesium transporters. The prokaryote orthologue, MgtE, is responsible for uptake of divalent cations, while the heterologous expression studies of mammalian proteins suggest Mg2+ efflux 406, possibly as a result of co-expression of particular protein partners (see 407). Topological modelling suggests 10 TM domains with cytoplasmic C- and N- termini.

Systematic nomenclature SLC41A1 SLC41A2 SLC41A3
Common abbreviation MgtE
HGNC, UniProt SLC41A1, Q8IVJ1 SLC41A2, Q96JW4 SLC41A3, Q96GZ6
Substrates Zn2+ 404, Mg2+ 404, Ba2+ 404, Cd2+ 404, Co2+404, Cu2+ 404, Fe2+404, Sr2+404 Mg2+ 405, Ba2+ 405, Ni2+ 405, Co2+405, Fe2+405, Mn2+405
Stoichiometry Unknown Unknown Unknown

SLC42 family of Rhesus glycoprotein ammonium transporters

Overview

LAT3 (SLC43A1) and LAT4 (SLC43A2) are transporters with system L amino acid transporter activity, along with the structurally and functionally distinct transporters LAT1 and LAT2 that are members of the SLC7 family. LAT3 and LAT4 contain 12 putative TM domains with both N and C termini located intracellularly. They transport neutral amino acids in a manner independent of Na+ and Cl- and with two kinetic components 412,413. LAT3/SLC43A1 is expressed in human tissues at high levels in the pancreas, liver, skeletal muscle and fetal liver 412 whereas LAT4/SLC43A2 is primarily expressed in the placenta, kidney and peripheral blood leukocytes 413. SLC43A3 is expressed in vascular endothelial cells 414 but remains to be characterised.

Nomenclature L-type amino acid transporter 3 L-type amino acid transporter 4 EEG1
Systematic nomenclature SLC43A1 SLC43A2 SLC43A3
Common abbreviation LAT3 LAT4
HGNC, UniProt SLC43A1, O75387 SLC43A2, Q8N370 SLC43A3, Q8NBI5
Substrates L-isoleucine, L-leucine, L-phenylalanine, L-valinol, L-leucinol, L-phenylalaninol, L-valine, L-methionine L-isoleucine, L-leucine, L-phenylalanine, L-valinol, L-leucinol, L-valine, L-methionine
Stoichiometry Operates by facilitative diffusion Operates by facilitative diffusion

Comments

Covalent modification of LAT3 by N-ethylmaleimide inhibits its function 412 and at LAT4 inhibits the low-, but not high-affinity component of transport 413.

SLC44 choline transporter-like family

Overview

Members of the choline transporter-like family are encoded by five genes (CTL1-CTL5) with further diversity occurring through alternative splicing of CTL1, 4 and 5 423. CTL family members are putative 10TM domain proteins with extracellular termini that mediate Na+-independent transport of choline with an affinity that is intermediate to that of the high affinity choline transporter CHT1 (SLC5A7) and the low affinity organic-cation transporters [OCT1 (SLC22A1) and OCT2 (SLC22A2)] 420. CLT1 is expressed almost ubiquitously in human tissues 425 and mediates choline transport across the plasma and mitochondrial membranes 419. Transport of choline by CTL2, which in rodents is expressed as two isoforms (CTL2P1 and CLTP2; 417) in lung, colon, inner ear and spleen and to a lesser extent in brain, tongue, liver, and kidney, has only recently been demonstrated 417,422. CTL3-5 remain to be characterized functionally.

Nomenclature Choline transporter-like 1 Choline transporter-like 2 Choline transporter-like 3 Choline transporter-like 4 Choline transporter-like 5
Systematic nomenclature SLC44A1 SLC44A2 SLC44A3 SLC44A4 SLC44A5
Common abbreviation CTL1 CTL2 CTL3 CTL4 CTL5
HGNC, UniProt SLC44A1, Q8WWI5 SLC44A2, Q8IWA5 SLC44A3, Q8N4M1 SLC44A4, Q53GD3 SLC44A5, Q8NCS7
Substrates choline choline
Inhibitors (pIC50) hemicholinium-3 (pKi 3.5 – 4.5)
Stoichiometry Unknown: uptake enhanced in the absence of extracellular Na+, reduced by membrane depolarization, extracellular acidification and collapse of plasma membrane H+ electrochemical gradient

Comments

Data tabulated are features observed for CLT1 endogenous to: rat astrocytes 416; rat renal tubule epithelial cells 426; human colon carcinoma cells 418; human keratinocytes 424 and human neuroblastoma cells 427. Choline uptake by CLT1 is inhibited by numerous organic cations (e.g.416,426,427). In the guinea-pig, CTL2 is a target for antibody-induced hearing loss 421 and in man, a polymorphism in CTL2 constitutes the human neutrophil alloantigen-3a (HNA-3a; 415).

SLC45 family of putative sugar transporters

Overview

Members of the SLC45 family remain to be fully characterised. SLC45A1 was initially identified in the rat brain, particularly predominant in the hindbrain, as a proton-associated sugar transport, induced by hypercapnia 430. The protein is predicted to have 12TM domains, with intracellular termini. The SLC45A2 gene is thought to encode a transporter protein that mediates melanin synthesis. Mutations in SLC45A2 are a cause of oculocutaneous albinism type 4 (e.g.429), and polymorphisms in this gene are associated with variations in skin and hair color (e.g. 428).

Systematic nomenclature SLC45A1 SLC45A2 SLC45A3 SLC45A4
HGNC, UniProt SLC45A1, Q9Y2W3 SLC45A2, Q9UMX9 SLC45A3, Q96JT2 SLC45A4, Q5BKX6
Substrates L-glucose (Rat) 430, Galactose (Rat) 430
Stoichiometry Unknown; increased at acid pH 430.

SLC46 family of folate transporters

Overview

Based on the proptypical member of this family, PCFT, this family includes proton-driven transporters with 11 TM segments. SLC46A1 has been described to act as an intestinal proton-coupled high-affinity folic acid transporter 432, with lower affinity for heme. folic acid accumulation is independent of Na+ or K+ ion concentrations, but driven by extracellular protons with an as yet undefined stoichiometry.

Nomenclature Proton-coupled folate transporter Thymic stromal co-transporter
Systematic nomenclature SLC46A1 SLC46A2 SLC46A3
Common abbreviation PCFT TSCOT
HGNC, UniProt SLC46A1, Q96NT5 SLC46A2, Q9BY10 SLC46A3, Q7Z3Q1
Substrates folic acid (1.3μM) > heme (>100 μM) 431
Endogenous substrates N5-methyltetrafolate 432
Substrates methotrexate 432, N-formyltetrahydrofolate, pemetrexed
Radioligands (Kd) [3H]folic acid, [3H]folinic acid, [3H]methotrexate, [3H]N5-methylfolate, [3H]pemetrexed
Comment Loss-of-function mutations in PCFT (SLC46A1) are the molecular basis for hereditary folate maladsorption 433 Function as-yet unknown Function as-yet unknown

SLC47 family of multidrug and toxin extrusion transporters

Overview

These proton:organic cation exchangers are predicted to have 13 TM segments 443 and are suggested to be responsible for excretion of many drugs in the liver and kidneys.

Nomenclature Multi antimicrobial extrusion protein MATE2
Systematic nomenclature SLC47A1 SLC47A2
Common abbreviation MATE1 MATE2-K
HGNC, UniProt SLC47A1, Q96FL8 SLC47A2, Q86VL8
Endogenous substrates creatine 439, thiamine 439 creatine 439, thiamine 439
Substrates cimetidine 437, quinidine 439, paraquat 434, cephradine 439, cephalexin 439 cimetidine 436, MPP+ 436, N1-methylnicotinamide 436, metformin 436, guanidine 439, procainamide 436, acyclovir 439
(Sub)family-selective inhibitors (pIC50) pyrimethamine (pKi 6.8), cimetidine (pKi 6.0) 441 pyrimethamine (pKi 6.3 - Mouse) 435, cimetidine (pKi 5.1) 441
Radioligands (Kd) [14C]metformin 439,440, [14C]TEA 438,440 [14C]TEA 439

Comments

DAPI has been used to allow quantification of MATE1 and MATE2-mediated transport activity 442. MATE2 and MATE2-B are inactive splice variants of MATE2-K 436.

SLC48 heme transporter

Overview

HRG1 has been identified as a cell surface and lysosomal heme transporter 445. In addition, evidence suggests this 4TM-containing protein associates with the V-ATPase in lysosomes 444. Recent studies confirm its lysosomal location and demonstrate that it has an important physiological function in macrophages ingesting senescent red blood cells (erythrophagocytosis), recycling heme (released from the red cell hemoglobin) from the phagolysosome into the cytosol, where the heme is subsequently catabolized to recycle the iron 446.

Nomenclature Heme transporter
Systematic nomenclature SLC48A1
Common abbreviation HRG1
HGNC, UniProt SLC48A1, Q6P1K1

SLC49 family of FLVCR-related heme transporters

Overview

FLVCR1 was initially identified as a cell-surface attachment site for feline leukemia virus subgroup C 455, and later identified as a cell surface accumulation which exports heme from the cytosol 452. A recent study indicates that an isoform of FLVCR1 is located in the mitochondria, the site of the final steps of heme synthesis, and appears to transport heme into the cytosol 448. FLVCR-mediated heme transport is essential for erythropoiesis. Flvcr1 gene mutations have been identified as the cause of PCARP (posterior column ataxia with retinitis pigmentosa (PCARP) 453.There are three paralogs of FLVCR1 in the human genome.

FLVCR2, most similar to FLVCR1 450, has been reported to function as a heme importer 449. In addition, a congenital syndrome of proliferative vasculopathy and hydranencephaly, also known as Fowler's syndrome, is associated with a loss-of-function mutation in FLVCR2 451.

The functions of the other two members of the SLC49 family, MFSD7 and DIRC2, are unknown, although DIRC2 has been implicated in hereditary renal carcinomas 447.

Nomenclature Feline leukemia virus subgroup C cellular receptor family, member 1 Feline leukemia virus subgroup C cellular receptor family, member 2 Major facilitator superfamily domain containing 7 Disrupted in renal carcinoma 2
Systematic nomenclature SLC49A1 SLC49A2 SLC49A3 SLC49A4
Common abbreviation FLVCR1 FLVCR2 MFSD7 DIRC2
HGNC, UniProt FLVCR1, Q9Y5Y0 FLVCR2, Q9UPI3 MFSD7, Q6UXD7 DIRC2, Q96SL1
Substrates heme 452 heme 449
Stoichiometry Unknown Unknown Unknown Unknown

Comments

Non-functional splice alternatives of FLVCR1 have been implicated as a cause of a congenital red cell aplasia, Diamond Blackfan anemia 454.

SLC50 sugar transporter

Overview

A mouse stromal cell cDNA library was used to clone C2.3 457, later termed Rag1-activating protein 1, with a sequence homology predictive of a 4TM topology. The plant orthologues, termed SWEETs, appear to be 7 TM proteins, with extracellular N-termini, and the capacity for bidirectional flux of D-glucose 456. Expression of mouse SWEET in the mammary gland was suggestive of a role in Golgi lactose synthesis 456.

Nomenclature SLC50 sugar exporter
Systematic nomenclature SLC50A1
Common abbreviation RAG1AP1
HGNC, UniProt SLC50A1, Q9BRV3

SLC51 family of steroid-derived molecule transporters

Overview

The SLC51 organic solute transporter family of transporters is a pair of heterodimeric proteins which regulate bile salt movements in the bile duct, small intestine and kidney, and elsewhere, as part of the enterohepatic circulation 458,460. OSTα/OSTβ is also expressed in steroidogenic cells of the brain and adrenal gland, where it may contribute to steroid movement 461. Bile acid transport is suggested to be facilitative and independent of sodium, potassium, chloride ions or protons 458,460. OSTα/OSTβ heterodimers have been shown to transport [3H]taurocholic acid, [3H]DHEAS, [3H]estrone-3-sulphate, [3H]-pregnenolone sulphate and [3H]DHEAS 458,460,461. OSTα is suggested to be a seven TM protein, while OSTβ is a single TM ‘ancillary’ protein, both of which are thought to have intracellular C-termini 462. Bimolecular fluorescence complementation studies suggest the possibility of OSTα homo-oligomers, as well as OSTα/OSTβ hetero-oligomers 459,462.

Nomenclature OSTα OSTβ
Systematic nomenclature SLC51A1 SLC51A1BP
HGNC, UniProt SLC51A, Q86UW1 SLC51B, Q86UW2

SLC52 family of riboflavin transporters

Overview

riboflavin, also known as vitamin B2, is a precursor of the enzyme cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Riboflavin transporters are predicted to possess 10 or 11 TM segments.

Nomenclature solute carrier family 52 (riboflavin transporter), member 1 solute carrier family 52 (riboflavin transporter), member 2 solute carrier family 52 (riboflavin transporter), member 3
Systematic nomenclature SLC52A1 SLC52A2 SLC52A3
Common abbreviation RFVT1 RFVT2 RFVT3
HGNC, UniProt SLC52A1, Q9NWF4 SLC52A2, Q9HAB3 SLC52A3, Q9NQ40
Endogenous substrates riboflavin (Km 1.38x10-9 M) 463 riboflavin (Km 9.8x10-10 M) 463 riboflavin (Km 3.3x10-10 M) 463
Stoichiometry Unknown Unknown H+-dependent

Comments

Although expressed elsewhere, RFVT3 is found on the luminal surface of intestinal epithelium and is thought to mediate uptake of dietary riboflavin, while RFVT1 and RFVT2 are thought to allow movement from the epithelium into the blood.

SLCO family of organic anion transporting polypeptides

Overview

The SLCO superfamily is comprised of the organic anion transporting polypeptides (OATPs). The 11 human OATPs are divided into 6 families and ten subfamilies based on amino acid identity. These proteins are located on the plasma membrane of cells throughout the body. They have 12 TM domains and intracellular termini, with multiple putative glycosylation sites. OATPs mediate the sodium-independent uptake of a wide range of amphiphilic substrates, including many drugs and toxins. Due to the multispecificity of these proteins, this guide lists classes of substrates and inhibitors for each family member. More comprehensive lists of substrates, inhibitors, and their relative affinities may be found in the review articles listed below.

Nomenclature OATP1A2 OATP1B1 OATP1B3 OATP1C1
Systematic nomenclature SLCO1A2 SLCO1B1 SLCO1B3 SLCO1C1
HGNC, UniProt SLCO1A2, P46721 SLCO1B1, Q9Y6L6 SLCO1B3, Q9NPD5 SLCO1C1, Q9NYB5
Endogenous substrates PGE2, bilirubin, bile acids, steroid conjugates, thyroid hormones bilirubin, bile acids, leukotrienes, steroid conjugates, thyroid hormones CCK-8, LTC4, bilirubin, bile acids, steroid conjugates, thyroid hormones steroid conjugates, thyroid hormones
Substrates deltorphin II, rosuvastatin, BSP, talinolol, microcystin, fexofenadine, ouabain, antibiotics, anticancer drugs, beta blockers, fluoroquinolones, HIV protease inhibitors rifampicin, BSP, fexofenadine, ACE inhibitors, anticancer drugs, antifungals, β-lactam antibiotics, bile acid derivatives and conjugates, endothelin receptor antagonists, HIV protease inhibitors, opioids, sartans, statins erythromycin-A, rifampicin, BSP, amanitin, digoxin, phalloidin, saquinavir, fexofenadine, ouabain, anticancer drugs, β-lactam antibiotics, bile acid derivatives and conjugates, opioids, sartans, statins BSP, statins
Inhibitors (pIC50) naringin, rifampicin, rifamycin SV cyclosporin A, gemfibrozil, glycyrrhizin, indocyanine Green, rifampicin, rifamycin SV, sildenafil cyclosporin A, gemfibrozil, glycyrrhizin, rifampicin, rifamycin SV, sildenafil DPDPE, probenecid, taurocholic acid
Radioligands (Kd) [3H]BSP, [3H]DPDPE, [3H]estrone-3-sulphate [3H]estradiol-17β-glucuronide, [3H]estrone-3-sulphate [3H]BSP, [3H]CCK-8 (human, mouse, rat), [3H]estradiol-17β-glucuronide [125I]thyroxine, [3H]BSP, [3H]estrone-3-sulphate
Comment Other inhibitors include fibrates, flavonoids, glitazones and macrolide antibiotics. pravastatin is used as a probe Other inhibitors include HIV protease inhibitors, glitazones and macrolide antibiotics
Nomenclature OATP2A1 OATP2B1 OATP3A1
Systematic nomenclature SLCO2A1 SLCO2B1 SLCO3A1
HGNC, UniProt SLCO2A1, Q92959 SLCO2B1, O94956 SLCO3A1, Q9UIG8
Endogenous substrates eicosanoids, prostaglandins T4, dehydroepiandrosterone sulphate, estrone-3-sulphate BQ123, vasopressin, prostaglandins, thyroid hormones
Substrates synthetic prostaglandin derivatives telmisartan, glibenclamide, amiodarone, bosentan, BSP, talinolol, aliskiren, fexofenadine, statins
Inhibitors (pIC50) bromocresol green, BSP gemfibrozil, glibenclamide, rifamycin SV
Radioligands (Kd) [3H]PGE2 [3H]BSP, [3H]estrone-3-sulphate [3H]estrone-3-sulphate, [3H]PGE2
Comment Other inhibitors include NSAIDs Other inhibitors include glitazones and citrus juices
Nomenclature OATP4A1 OATP4C1 OATP5A1 OATP6A1
Systematic nomenclature SLCO4A1 SLCO4C1 SLCO5A1 SLCO6A1
HGNC, UniProt SLCO4A1, Q96BD0 SLCO4C1, Q6ZQN7 SLCO5A1, Q9H2Y9 SLCO6A1, Q86UG4
Endogenous substrates bile acids, prostaglandins, steroid conjugates, thyroid hormones cAMP, steroid conjugates, thyroid hormones
Substrates penicillin G anticancer drugs, cardiac glycosides, dipeptidyl peptidase-4 inhibitors
Radioligands (Kd) [3H]estrone-3-sulphate [3H]digoxin

Further reading

  1. Aye IL. Singh AT. Keelan JA. Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem Biol Interact. 2009;180:327–339. doi: 10.1016/j.cbi.2009.04.012. [PMID:19426719] [DOI] [PubMed] [Google Scholar]
  2. Gutmann DA. Ward A. Urbatsch IL. Chang G. Veen HW. Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci. 2010;35:36–42. doi: 10.1016/j.tibs.2009.07.009. [PMID:19819701] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hinz A. Tampé R. ABC transporters and immunity: mechanism of self-defense. Biochemistry. 2012;51:4981–4989. doi: 10.1021/bi300128f. [PMID:22668350] [DOI] [PubMed] [Google Scholar]
  4. Kemp S. Theodoulou FL. Wanders RJ. Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol. 2011;164:1753–1766. doi: 10.1111/j.1476-5381.2011.01435.x. [PMID:21488864] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kerr ID. Haider AJ. Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol. 2011;164:1767–1779. doi: 10.1111/j.1476-5381.2010.01177.x. [PMID:21175590] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010;31:246–254. doi: 10.1016/j.tips.2010.03.003. [PMID:20417575] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Procko E. O'Mara ML. Bennett WF. Tieleman DP. Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J. 2009;23:1287–1302. doi: 10.1096/fj.08-121855. [PMID:19174475] [DOI] [PubMed] [Google Scholar]
  8. Ravna AW. Sager G. Molecular modeling studies of ABC transporters involved in multidrug resistance. Mini Rev Med Chem. 2009;9:186–193. doi: 10.2174/138955709787316065. [PMID:19200023] [DOI] [PubMed] [Google Scholar]
  9. Rees DC. Johnson E. Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10:218–227. doi: 10.1038/nrm2646. [PMID:19234479] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Seeger MA. Veen HW. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta. 2009;1794:725–737. doi: 10.1016/j.bbapap.2008.12.004. [PMID:19135557] [DOI] [PubMed] [Google Scholar]

Further reading

  1. El Far O. Seagar M. A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem. 2011;117:603–612. doi: 10.1111/j.1471-4159.2011.07234.x. [PMID:21375531] [DOI] [PubMed] [Google Scholar]
  2. Junge W. Sielaff H. Engelbrecht S. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature. 2009;459:364–370. doi: 10.1038/nature08145. [PMID:19458712] [DOI] [PubMed] [Google Scholar]
  3. Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86. doi: 10.1146/annurev-physiol-012110-142317. [PMID:22335796] [DOI] [PubMed] [Google Scholar]
  4. Nakamoto RK. Baylis Scanlon JA. Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys. 2008;476:43–50. doi: 10.1016/j.abb.2008.05.004. [PMID:18515057] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nakanishi-Matsui M. Sekiya M. Nakamoto RK. Futai M. The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta. 2010;1797:1343–1352. doi: 10.1016/j.bbabio.2010.02.014. [PMID:20170625] [DOI] [PubMed] [Google Scholar]
  6. Okuno D. Iino R. Noji H. Rotation and structure of FoF1-ATP synthase. J Biochem. 2011;149:655–664. doi: 10.1093/jb/mvr049. [PMID:21524994] [DOI] [PubMed] [Google Scholar]
  7. Ballmoos C. Cook GM. Dimroth P. Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys. 2008;37:43–64. doi: 10.1146/annurev.biophys.37.032807.130018. [PMID:18573072] [DOI] [PubMed] [Google Scholar]
  8. Ballmoos C. Wiedenmann A. Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem. 2009;78:649–672. doi: 10.1146/annurev.biochem.78.081307.104803. [PMID:19489730] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Argüello JM. Raimunda D. González-Guerrero M. Metal transport across biomembranes: emerging models for a distinct chemistry. J Biol Chem. 2012;287:13510–13517. doi: 10.1074/jbc.R111.319343. [PMID:22389499] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benarroch EE. Na+, K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology. 2011;76:287–293. doi: 10.1212/WNL.0b013e3182074c2f. [PMID:21242497] [DOI] [PubMed] [Google Scholar]
  3. Brini M. Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009;89:1341–1378. doi: 10.1152/physrev.00032.2008. [PMID:19789383] [DOI] [PubMed] [Google Scholar]
  4. Bublitz M. Musgaard M. Poulsen H. Thøgersen L. Olesen C. Schiøtt B. Morth JP. Møller JV. Nissen P. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 2013;288:10759–10765. doi: 10.1074/jbc.R112.436550. [PMID:23400778] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cereijido M. Contreras RG. Shoshani L. Larre I. The Na+-K+-ATPase as self-adhesion molecule and hormone receptor. Am J Physiol, Cell Physiol. 2012;302:C473–C481. doi: 10.1152/ajpcell.00083.2011. [PMID:22049208] [DOI] [PubMed] [Google Scholar]
  6. Galougahi KK. Liu CC. Bundgaard H. Rasmussen HH. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling. Trends Cardiovasc Med. 2012;22:83–87. doi: 10.1016/j.tcm.2012.06.017. [PMID:23040838] [DOI] [PubMed] [Google Scholar]
  7. Gupta SP. Quantitative structure-activity relationship studies on Na+,K(+)-ATPase inhibitors. Chem Rev. 2012;112:3171–3192. doi: 10.1021/cr200097p. [PMID:22360614] [DOI] [PubMed] [Google Scholar]
  8. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7:15–29. doi: 10.1038/nrneurol.2010.180. [PMID:21221114] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. López-Marqués RL. Holthuis JC. Pomorski TG. Pumping lipids with P4-ATPases. Biol Chem. 2011;392:67–76. doi: 10.1515/BC.2011.015. [PMID:21194369] [DOI] [PubMed] [Google Scholar]
  10. Mattle D. Sitsel O. Autzen HE. Meloni G. Gourdon P. Nissen P. On allosteric modulation of P-type Cu(+)-ATPases. J Mol Biol. 2013;425:2299–2308. doi: 10.1016/j.jmb.2013.03.008. [PMID:23500486] [DOI] [PubMed] [Google Scholar]
  11. Michelangeli F. East JM. A diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans. 2011;39:789–797. doi: 10.1042/BST0390789. [PMID:21599650] [DOI] [PubMed] [Google Scholar]
  12. Morth JP. Pedersen BP. Buch-Pedersen MJ. Andersen JP. Vilsen B. Palmgren MG. Nissen P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol. 2011;12:60–70. doi: 10.1038/nrm3031. [PMID:21179061] [DOI] [PubMed] [Google Scholar]
  13. Palmgren MG. Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–266. doi: 10.1146/annurev.biophys.093008.131331. [PMID:21351879] [DOI] [PubMed] [Google Scholar]
  14. Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium. 2011;50:139–146. doi: 10.1016/j.ceca.2011.01.004. [PMID:21310481] [DOI] [PubMed] [Google Scholar]
  15. Pizzo P. Lissandron V. Capitanio P. Pozzan T. Ca(2+) signalling in the Golgi apparatus. Cell Calcium. 2011;50:184–192. doi: 10.1016/j.ceca.2011.01.006. [PMID:21316101] [DOI] [PubMed] [Google Scholar]
  16. Reinhard L. Tidow H. Clausen MJ. Nissen P. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Cell Mol Life Sci. 2013;70:205–222. doi: 10.1007/s00018-012-1039-9. [PMID:22695678] [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sebastian TT. Baldridge RD. Xu P. Graham TR. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta. 2012;1821:1068–1077. doi: 10.1016/j.bbalip.2011.12.007. [PMID:22234261] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bröer S. Palacín M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193–211. doi: 10.1042/BJ20101912. [PMID:21568940] [DOI] [PubMed] [Google Scholar]
  2. Chao XD. Fei F. Fei Z. The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res. 2010;35:1224–1230. doi: 10.1007/s11064-010-0178-3. [PMID:20440555] [DOI] [PubMed] [Google Scholar]
  3. Jiang J. Amara SG. New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology. 2011;60:172–181. doi: 10.1016/j.neuropharm.2010.07.019. [PMID:20708631] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kanai Y. Clémençon B. Simonin A. Leuenberger M. Lochner M. Weisstanner M. Hediger MA. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med. 2013;34:108–120. doi: 10.1016/j.mam.2013.01.001. [PMID:23506861] [DOI] [PubMed] [Google Scholar]
  5. Kim K. Lee SG. Kegelman TP. Su ZZ. Das SK. Dash R. Dasgupta S. Barral PM. Hedvat M. Diaz P, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226:2484–2493. doi: 10.1002/jcp.22609. [PMID:21792905] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life. 2010;62:315–333. doi: 10.1002/iub.315. [PMID:20209635] [DOI] [PubMed] [Google Scholar]
  2. Leney SE. Tavaré JM. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol. 2009;203:1–18. doi: 10.1677/JOE-09-0037. [PMID:19389739] [DOI] [PubMed] [Google Scholar]
  3. Mueckler M. Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–138. doi: 10.1016/j.mam.2012.07.001. [PMID:23506862] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Uldry M. Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004;447:480–489. doi: 10.1007/s00424-003-1085-0. [PMID:12750891] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Closs EI. Boissel JP. Habermeier A. Rotmann A. Structure and function of cationic amino acid transporters (CATs) J Membr Biol. 2006;213:67–77. doi: 10.1007/s00232-006-0875-7. [PMID:17417706] [DOI] [PubMed] [Google Scholar]
  2. Fotiadis D. Kanai Y. Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med. 2013;34:139–158. doi: 10.1016/j.mam.2012.10.007. [PMID:23506863] [DOI] [PubMed] [Google Scholar]
  3. Palacín M. Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 2004;447:490–494. doi: 10.1007/s00424-003-1062-7. [PMID:14770309] [DOI] [PubMed] [Google Scholar]
  4. Palacín M. Nunes V. Font-Llitjós M. Jiménez-Vidal M. Fort J. Gasol E. Pineda M. Feliubadaló L. Chillarón J. Zorzano A. The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 2005;20:112–124. doi: 10.1152/physiol.00051.2004. [PMID:15772300] [DOI] [PubMed] [Google Scholar]
  5. Verrey F. Closs EI. Wagner CA. Palacin M. Endou H. Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–542. doi: 10.1007/s00424-003-1086-z. [PMID:14770310] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol. 2009;212:1672–1683. doi: 10.1242/jeb.029454. (Pt 11): [PMID:19448077] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boron WF. Chen L. Parker MD. Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol. 2009;212:1697–1706. doi: 10.1242/jeb.028563. (Pt 11): [PMID:19448079] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Liu Y. Wang DK. Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod. 2012;86:99. doi: 10.1095/biolreprod.111.096826. [PMID:22262691] [DOI] [PubMed] [Google Scholar]
  4. Majumdar D. Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience. 2010;171:951–972. doi: 10.1016/j.neuroscience.2010.09.037. [PMID:20884330] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Parker MD. Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev. 2013;93:803–959. doi: 10.1152/physrev.00023.2012. [PMID:23589833] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Romero MF. Chen AP. Parker MD. Boron WF. The SLC4 family of bicarbonate (HCO3−) transporters. Mol Aspects Med. 2013;34:159–182. doi: 10.1016/j.mam.2012.10.008. [PMID:23506864] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci. 2011;32:63–71. doi: 10.1016/j.tips.2010.11.011. [PMID:21211857] [DOI] [PubMed] [Google Scholar]
  2. Chao EC. Henry RR. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9:551–559. doi: 10.1038/nrd3180. [PMID:20508640] [DOI] [PubMed] [Google Scholar]
  3. Kinne RK. Castaneda F. SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol. 2011;203:105–126. doi: 10.1007/978-3-642-17214-4_5. [PMID:21484569] [DOI] [PubMed] [Google Scholar]
  4. Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34:183–196. doi: 10.1016/j.mam.2012.11.002. [PMID:23506865] [DOI] [PubMed] [Google Scholar]
  5. Wright EM. Loo DD. Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID:21527736] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bröer S. Gether U. The solute carrier 6 family of transporters. Br J Pharmacol. 2012;167:256–278. doi: 10.1111/j.1476-5381.2012.01975.x. [PMID:22519513] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Pramod AB. Foster J. Carvelli L. Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med. 2013;34:197–219. doi: 10.1016/j.mam.2012.07.002. [PMID:23506866] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ramamoorthy S. Shippenberg TS. Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther. 2011;129:220–238. doi: 10.1016/j.pharmthera.2010.09.009. [PMID:20951731] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rudnick G. Cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry. 2011;50:7462–7475. doi: 10.1021/bi200926b. [PMID:21774491] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Zhong H. Sánchez C. Caron MG. Consideration of allosterism and interacting proteins in the physiological functions of the serotonin transporter. Biochem Pharmacol. 2012;83:435–442. doi: 10.1016/j.bcp.2011.09.020. [PMID:21983034] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Annunziato L. Pignataro G. Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56:633–654. doi: 10.1124/pr.56.4.5. [PMID:15602012] [DOI] [PubMed] [Google Scholar]
  2. Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol. 2004;30:91–116. doi: 10.1385/MN:30:1:091. [PMID:15247490] [DOI] [PubMed] [Google Scholar]
  3. Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J. 2007;406:365–382. doi: 10.1042/BJ20070619. [PMID:17716241] [DOI] [PubMed] [Google Scholar]
  4. Quednau BD. Nicoll DA. Philipson KD. The sodium/calcium exchanger family-SLC8. Pflugers Arch. 2004;447:543–548. doi: 10.1007/s00424-003-1065-4. [PMID:12734757] [DOI] [PubMed] [Google Scholar]
  5. Watanabe Y. Koide Y. Kimura J. Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors. J Pharmacol Sci. 2006;102:7–16. doi: 10.1254/jphs.fmj06002x2. [PMID:16990699] [DOI] [PubMed] [Google Scholar]
  6. Zhang YH. Hancox JC. Regulation of cardiac Na+-Ca2+ exchanger activity by protein kinase phosphorylation–still a paradox? Cell Calcium. 2009;45:1–10. doi: 10.1016/j.ceca.2008.05.005. [PMID:18614228] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bobulescu IA. Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch. 2009;458:5–21. doi: 10.1007/s00424-008-0595-1. [PMID:18853182] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casey JR. Grinstein S. Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol. 2010;11:50–61. doi: 10.1038/nrm2820. [PMID:19997129] [DOI] [PubMed] [Google Scholar]
  3. Donowitz M. Ming Tse C. Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Aspects Med. 2013;34:236–251. doi: 10.1016/j.mam.2012.05.001. [PMID:23506868] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kato A. Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol. 2011;73:261–281. doi: 10.1146/annurev-physiol-012110-142244. [PMID:21054167] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kemp G. Young H. Fliegel L. Structure and function of the human Na+/H+ exchanger isoform 1. Channels (Austin) 2008;2:329–336. doi: 10.4161/chan.2.5.6898. [PMID:19001864] [DOI] [PubMed] [Google Scholar]
  6. Ohgaki R. IJzendoorn SC. Matsushita M. Hoekstra D. Kanazawa H. Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry. 2011;50:443–450. doi: 10.1021/bi101082e. [PMID:21171650] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Borges K. Slc10A4 - what do we know about the function of this "secret ligand carrier" protein? Exp Neurol. 2013;248C:258–261. doi: 10.1016/j.expneurol.2013.06.019. [Epub ahead of print]. [PMID:23810836] [DOI] [PubMed] [Google Scholar]
  2. Claro Silva T. Polli JE. Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med. 2013;34:252–269. doi: 10.1016/j.mam.2012.07.004. [PMID:23506869] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dawson PA. Lan T. Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. [PMID:19498215] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Döring B. Lütteke T. Geyer J. Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105–168. doi: 10.1016/B978-0-12-394316-3.00004-1. [PMID:23177985] [DOI] [PubMed] [Google Scholar]
  5. Zwicker BL. Agellon LB. Transport and biological activities of bile acids. Int J Biochem Cell Biol. 2013;45:1389–1398. doi: 10.1016/j.biocel.2013.04.012. [PMID:23603607] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Li X. Yang Y. Zhou F. Zhang Y. Lu H. Jin Q. Gao L. SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PLoS ONE. 2011;6:e15831. doi: 10.1371/journal.pone.0015831. [PMID:21283567] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Mackenzie B. Hediger MA. SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch. 2004;447:571–579. doi: 10.1007/s00424-003-1141-9. [PMID:14530973] [DOI] [PubMed] [Google Scholar]
  3. Montalbetti N. Simonin A. Kovacs G. Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34:270–287. doi: 10.1016/j.mam.2013.01.002. [PMID:23506870] [DOI] [PubMed] [Google Scholar]
  4. Nevo Y. Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 2006;1763:609–620. doi: 10.1016/j.bbamcr.2006.05.007. [PMID:16908340] [DOI] [PubMed] [Google Scholar]
  5. Zheng W. Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–188. doi: 10.1016/j.pharmthera.2011.10.006. [PMID:22115751] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Arroyo JP. Kahle KT. Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol Aspects Med. 2013;34:288–298. doi: 10.1016/j.mam.2012.05.002. [PMID:23506871] [DOI] [PubMed] [Google Scholar]
  2. Gagnon KB. Delpire E. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am J Physiol, Cell Physiol. 2013;304:C693–C714. doi: 10.1152/ajpcell.00350.2012. [PMID:23325410] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gamba G. Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch. 2009;458:61–76. doi: 10.1007/s00424-008-0607-1. [PMID:18982348] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hebert SC. Mount DB. Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch. 2004;447:580–593. doi: 10.1007/s00424-003-1066-3. [PMID:12739168] [DOI] [PubMed] [Google Scholar]
  5. Kahle KT. Rinehart J. Lifton RP. Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta. 2010;1802:1150–1158. doi: 10.1016/j.bbadis.2010.07.009. [PMID:20637866] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lang F. Vallon V. Knipper M. Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol, Cell Physiol. 2007;293:C1187–C1208. doi: 10.1152/ajpcell.00024.2007. [PMID:17670895] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Lee A. Dawson PA. Markovich D. NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol. 2005;37:1350–1356. doi: 10.1016/j.biocel.2005.02.013. [PMID:15833267] [DOI] [PubMed] [Google Scholar]
  2. Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol. 2011;300:F1267–F1270. doi: 10.1152/ajprenal.00061.2011. [PMID:21490138] [DOI] [PubMed] [Google Scholar]
  3. Markovich D. Aronson PS. Specificity and regulation of renal sulfate transporters. Annu Rev Physiol. 2007;69:361–375. doi: 10.1146/annurev.physiol.69.040705.141319. [PMID:17002596] [DOI] [PubMed] [Google Scholar]
  4. Markovich D. Murer H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 2004;447:594–602. doi: 10.1007/s00424-003-1128-6. [PMID:12915942] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Pannabecker TL. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am J Physiol Regul Integr Comp Physiol. 2013;304:R488–R503. doi: 10.1152/ajpregu.00456.2012. [PMID:23364530] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Shayakul C. Clémençon B. Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med. 2013;34:313–322. doi: 10.1016/j.mam.2012.12.003. [PMID:23506873] [DOI] [PubMed] [Google Scholar]
  3. Shayakul C. Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch. 2004;447:603–609. doi: 10.1007/s00424-003-1124-x. [PMID:12856182] [DOI] [PubMed] [Google Scholar]
  4. Smith CP. Mammalian urea transporters. Exp Physiol. 2009;94:180–185. doi: 10.1113/expphysiol.2008.043042. [PMID:19028811] [DOI] [PubMed] [Google Scholar]
  5. Stewart G. The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol. 2011;164:1780–1792. doi: 10.1111/j.1476-5381.2011.01377.x. [PMID:21449978] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiol (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
  2. Biegel A. Knütter I. Hartrodt B. Gebauer S. Theis S. Luckner P. Kottra G. Rastetter M. Zebisch K. Thondorf I, et al. The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids. 2006;31:137–156. doi: 10.1007/s00726-006-0331-0. [PMID:16868651] [DOI] [PubMed] [Google Scholar]
  3. Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol. 2009;5:887–905. doi: 10.1517/17425250903042292. [PMID:19519280] [DOI] [PubMed] [Google Scholar]
  4. Ingersoll SA. Ayyadurai S. Charania MA. Laroui H. Yan Y. Merlin D. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2012;302:G484–G492. doi: 10.1152/ajpgi.00477.2011. [PMID:22194420] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Smith DE. Clémençon B. Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. 2013;34:323–336. doi: 10.1016/j.mam.2012.11.003. [PMID:23506874] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Thwaites DT. Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol. 2007;92:603–619. doi: 10.1113/expphysiol.2005.029959. [PMID:17468205] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
  2. Braun D. Wirth EK. Schweizer U. Thyroid hormone transporters in the brain. Rev Neurosci. 2010;21:173–186. doi: 10.1515/revneuro.2010.21.3.173. [PMID:20879691] [DOI] [PubMed] [Google Scholar]
  3. Friesema EC. Visser WE. Visser TJ. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol. 2010;322:107–113. doi: 10.1016/j.mce.2010.01.016. [PMID:20083155] [DOI] [PubMed] [Google Scholar]
  4. Halestrap AP. Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447:619–628. doi: 10.1007/s00424-003-1067-2. [PMID:12739169] [DOI] [PubMed] [Google Scholar]
  5. Heuer H. Visser TJ. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology. 2009;150:1078–1083. doi: 10.1210/en.2008-1518. [PMID:19179441] [DOI] [PubMed] [Google Scholar]
  6. Jansen J. Friesema EC. Milici C. Visser TJ. Thyroid hormone transporters in health and disease. Thyroid. 2005;15:757–768. doi: 10.1089/thy.2005.15.757. [PMID:16131319] [DOI] [PubMed] [Google Scholar]
  7. Meredith D. Christian HC. The SLC16 monocaboxylate transporter family. Xenobiotica. 2008;38:1072–1106. doi: 10.1080/00498250802010868. [PMID:18668440] [DOI] [PubMed] [Google Scholar]
  8. Morris ME. Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J. 2008;10:311–321. doi: 10.1208/s12248-008-9035-6. [PMID:18523892] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deure WM. Peeters RP. Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol. 2010;44:1–11. doi: 10.1677/JME-09-0042. [PMID:19541799] [DOI] [PubMed] [Google Scholar]
  10. Visser TJ. Thyroid hormone transporters. Horm Res. 2007;68 Suppl 5:28–30. doi: 10.1159/000110469. [PMID:18174701] [DOI] [PubMed] [Google Scholar]
  11. Visser WE. Friesema EC. Jansen J. Visser TJ. Thyroid hormone transport in and out of cells. Trends Endocrinol Metab. 2008;19:50–56. doi: 10.1016/j.tem.2007.11.003. [PMID:18291666] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
  2. El Mestikawy S. Wallén-Mackenzie A. Fortin GM. Descarries L. Trudeau LE. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci. 2011;12:204–216. doi: 10.1038/nrn2969. [PMID:21415847] [DOI] [PubMed] [Google Scholar]
  3. Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
  4. Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
  5. Omote H. Miyaji T. Juge N. Moriyama Y. Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry. 2011;50:5558–5565. doi: 10.1021/bi200567k. [PMID:21612282] [DOI] [PubMed] [Google Scholar]
  6. Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med. 2013;34:350–359. doi: 10.1016/j.mam.2012.05.004. [PMID:23506876] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Chaudhry FA. Edwards RH. Fonnum F. Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol. 2008;48:277–301. doi: 10.1146/annurev.pharmtox.46.120604.141146. [PMID:17883368] [DOI] [PubMed] [Google Scholar]
  2. Eiden LE. Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci. 2011;1216:86–98. doi: 10.1111/j.1749-6632.2010.05906.x. [PMID:21272013] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giboureau N. Som IM. Boucher-Arnold A. Guilloteau D. Kassiou M. PET radioligands for the vesicular acetylcholine transporter (VAChT) Curr Top Med Chem. 2010;10:1569–1583. doi: 10.2174/156802610793176846. [PMID:20583990] [DOI] [PubMed] [Google Scholar]
  4. Khare P. White AR. Mulakaluri A. Parsons SM. Equilibrium binding and transport by vesicular acetylcholine transporter. Methods Mol Biol. 2010;637:181–219. doi: 10.1007/978-1-60761-700-6_10. [PMID:20419436] [DOI] [PubMed] [Google Scholar]
  5. Lawal HO. Krantz DE. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med. 2013;34:360–372. doi: 10.1016/j.mam.2012.07.005. [PMID:23506877] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Prado VF. Roy A. Kolisnyk B. Gros R. Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–274. doi: 10.1042/BJ20121662. [PMID:23410039] [DOI] [PubMed] [Google Scholar]
  7. Ramamoorthy S. Shippenberg TS. Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther. 2011;129:220–238. doi: 10.1016/j.pharmthera.2010.09.009. [PMID:20951731] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wimalasena K. Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev. 2011;31:483–519. doi: 10.1002/med.20187. [PMID:20135628] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Ganapathy V. Smith SB. Prasad PD. SLC19: the folate/thiamine transporter family. Pflugers Arch. 2004;447:641–646. doi: 10.1007/s00424-003-1068-1. [PMID:14770311] [DOI] [PubMed] [Google Scholar]
  2. Goldman ID. Chattopadhyay S. Zhao R. Moran R. The antifolates: evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Curr Opin Investig Drugs. 2010;11:1409–1423. [PMID:21154123] [PubMed] [Google Scholar]
  3. Matherly LH. Hou Z. Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. Vitam Horm. 2008;79:145–184. doi: 10.1016/S0083-6729(08)00405-6. [PMID:18804694] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Yuasa H. Inoue K. Hayashi Y. Molecular and functional characteristics of proton-coupled folate transporter. J Pharm Sci. 2009;98:1608–1616. doi: 10.1002/jps.21515. [PMID:18823045] [DOI] [PubMed] [Google Scholar]
  5. Zhao R. Diop-Bove N. Visentin M. Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi: 10.1146/annurev-nutr-072610-145133. [PMID:21568705] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zhao R. Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–385. doi: 10.1016/j.mam.2012.07.006. [PMID:23506878] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
  2. Forster IC. Hernando N. Biber J. Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34:386–395. doi: 10.1016/j.mam.2012.07.007. [PMID:23506879] [DOI] [PubMed] [Google Scholar]
  3. Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
  4. Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
  5. Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Burckhardt G. Drug transport by Organic Anion Transporters (OATs) Pharmacol Ther. 2012;136:106–130. doi: 10.1016/j.pharmthera.2012.07.010. [PMID:22841915] [DOI] [PubMed] [Google Scholar]
  2. Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34:413–435. doi: 10.1016/j.mam.2012.10.010. [PMID:23506881] [DOI] [PubMed] [Google Scholar]
  3. König J. Müller F. Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–966. doi: 10.1124/pr.113.007518. [PMID:23686349] [DOI] [PubMed] [Google Scholar]
  4. Motohashi H. Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15:581–588. doi: 10.1208/s12248-013-9465-7. [PMID:23435786] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bürzle M. Suzuki Y. Ackermann D. Miyazaki H. Maeda N. Clémençon B. Burrier R. Hediger MA. The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med. 2013;34:436–454. doi: 10.1016/j.mam.2012.12.002. [PMID:23506882] [DOI] [PubMed] [Google Scholar]
  2. May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol. 2011;164:1793–1801. doi: 10.1111/j.1476-5381.2011.01350.x. [PMID:21418192] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Rivas CI. Zúñiga FA. Salas-Burgos A. Mardones L. Ormazabal V. Vera JC. Vitamin C transporters. J Physiol Biochem. 2008;64:357–375. doi: 10.1007/BF03174092. [PMID:19391462] [DOI] [PubMed] [Google Scholar]
  4. Savini I. Rossi A. Pierro C. Avigliano L. Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids. 2008;34:347–355. doi: 10.1007/s00726-007-0555-7. [PMID:17541511] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Altimimi HF. Schnetkamp PP. Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles. Channels (Austin) 2007;1:62–69. doi: 10.4161/chan.4366. [PMID:18690016] [DOI] [PubMed] [Google Scholar]
  2. Schnetkamp PP. The SLC24 gene family of Na+/Ca2+-K+ exchangers: from sight and smell to memory consolidation and skin pigmentation. Mol Aspects Med. 2013;34:455–464. doi: 10.1016/j.mam.2012.07.008. [PMID:23506883] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Cioffi F. Senese R. Lange P. Goglia F. Lanni A. Lombardi A. Uncoupling proteins: a complex journey to function discovery. Biofactors. 2009;35:417–428. doi: 10.1002/biof.54. [PMID:19626697] [DOI] [PubMed] [Google Scholar]
  2. Clémençon B. Babot M. Trézéguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol Aspects Med. 2013;34:485–493. doi: 10.1016/j.mam.2012.05.006. [PMID:23506884] [DOI] [PubMed] [Google Scholar]
  3. Gnoni GV. Priore P. Geelen MJ. Siculella L. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life. 2009;61:987–994. doi: 10.1002/iub.249. [PMID:19787704] [DOI] [PubMed] [Google Scholar]
  4. Gutiérrez-Aguilar M. Baines CP. Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem J. 2013;454:371–386. doi: 10.1042/BJ20121753. [PMID:23988125] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 2004;447:689–709. doi: 10.1007/s00424-003-1099-7. [PMID:14598172] [DOI] [PubMed] [Google Scholar]
  6. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 2013;34:465–484. doi: 10.1016/j.mam.2012.05.005. [PMID:23266187] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Alper SL. Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 2013;34:494–515. doi: 10.1016/j.mam.2012.07.009. [PMID:23506885] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dorwart MR. Shcheynikov N. Yang D. Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda) 2008;23:104–114. doi: 10.1152/physiol.00037.2007. [PMID:18400693] [DOI] [PubMed] [Google Scholar]
  3. Kato A. Romero MF. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol. 2011;73:261–281. doi: 10.1146/annurev-physiol-012110-142244. [PMID:21054167] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mount DB. Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 2004;447:710–721. doi: 10.1007/s00424-003-1090-3. [PMID:12759755] [DOI] [PubMed] [Google Scholar]
  5. Nofziger C. Dossena S. Suzuki S. Izuhara K. Paulmichl M. Pendrin function in airway epithelia. Cell Physiol Biochem. 2011;28:571–578. doi: 10.1159/000335115. [PMID:22116372] [DOI] [PubMed] [Google Scholar]
  6. Ohana E. Yang D. Shcheynikov N. Muallem S. Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol (Lond) 2009;587:2179–2185. doi: 10.1113/jphysiol.2008.164863. (Pt 10): [PMID:19015189] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Soleimani M. SLC26 Cl(-)/HCO3(-) exchangers in the kidney: roles in health and disease. Kidney Int. 2013 doi: 10.1038/ki.2013.138. [Epub ahead of print]. [PMID:23636174] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Anderson CM. Stahl A. SLC27 fatty acid transport proteins. Mol Aspects Med. 2013;34:516–528. doi: 10.1016/j.mam.2012.07.010. [PMID:23506886] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Schwenk RW. Holloway GP. Luiken JJ. Bonen A. Glatz JF. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids. 2010;82:149–154. doi: 10.1016/j.plefa.2010.02.029. [PMID:20206486] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Baldwin SA. McConkey GA. Cass CE. Young JD. Nucleoside transport as a potential target for chemotherapy in malaria. Curr Pharm Des. 2007;13:569–580. doi: 10.2174/138161207780162845. [PMID:17346175] [DOI] [PubMed] [Google Scholar]
  2. Cano-Soldado P. Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev. 2012;32:428–457. doi: 10.1002/med.20221. [PMID:21287570] [DOI] [PubMed] [Google Scholar]
  3. King AE. Ackley MA. Cass CE. Young JD. Baldwin SA. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 2006;27:416–425. doi: 10.1016/j.tips.2006.06.004. [PMID:16820221] [DOI] [PubMed] [Google Scholar]
  4. Pastor-Anglada M. Cano-Soldado P. Errasti-Murugarren E. Casado FJ. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica. 2008;38:972–994. doi: 10.1080/00498250802069096. [PMID:18668436] [DOI] [PubMed] [Google Scholar]
  5. Young JD. Yao SY. Baldwin JM. Cass CE. Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34:529–547. doi: 10.1016/j.mam.2012.05.007. [PMID:23506887] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bouron A. Oberwinkler J. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch. 2013 doi: 10.1007/s00424-013-1295-z. [Epub ahead of print]. [PMID:23719866] [DOI] [PubMed] [Google Scholar]
  2. Huang L. Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med. 2013;34:548–560. doi: 10.1016/j.mam.2012.05.008. [PMID:23506888] [DOI] [PubMed] [Google Scholar]
  3. Kawasaki E. ZnT8 and type 1 diabetes. Endocr J. 2012;59:531–537. doi: 10.1507/endocrj.ej12-0069. [PMID:22447136] [DOI] [PubMed] [Google Scholar]
  4. Palmiter RD. Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 2004;447:744–751. doi: 10.1007/s00424-003-1070-7. [PMID:12748859] [DOI] [PubMed] [Google Scholar]
  5. Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551. doi: 10.1007/s00125-010-1793-x. [PMID:20490449] [DOI] [PubMed] [Google Scholar]
  6. Wang X. Zhou B. Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life. 2010;62:176–182. doi: 10.1002/iub.291. [PMID:20120011] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Howell SB. Safaei R. Larson CA. Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol. 2010;77:887–894. doi: 10.1124/mol.109.063172. [PMID:20159940] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kim H. Wu X. Lee J. SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med. 2013;34:561–570. doi: 10.1016/j.mam.2012.07.011. [PMID:23506889] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Nose Y. Rees EM. Thiele DJ. Structure of the Ctr1 copper trans'PORE'ter reveals novel architecture. Trends Biochem Sci. 2006;31:604–607. doi: 10.1016/j.tibs.2006.09.003. [PMID:16982196] [DOI] [PubMed] [Google Scholar]
  4. Petris MJ. The SLC31 (Ctr) copper transporter family. Pflugers Arch. 2004;447:752–755. doi: 10.1007/s00424-003-1092-1. [PMID:12827356] [DOI] [PubMed] [Google Scholar]
  5. Zheng W. Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–188. doi: 10.1016/j.pharmthera.2011.10.006. [PMID:22115751] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Erickson JD. De Gois S. Varoqui H. Schafer MK. Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int. 2006;48:643–649. doi: 10.1016/j.neuint.2005.12.029. [PMID:16546297] [DOI] [PubMed] [Google Scholar]
  2. Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie. 2000;82:327–337. doi: 10.1016/s0300-9084(00)00221-2. [PMID:10865121] [DOI] [PubMed] [Google Scholar]
  3. Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch. 2004;447:756–759. doi: 10.1007/s00424-003-1091-2. [PMID:12750892] [DOI] [PubMed] [Google Scholar]
  4. Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Hirabayashi Y. Kanamori A. Nomura KH. Nomura K. The acetyl-CoA transporter family SLC33. Pflugers Arch. 2004;447:760–762. doi: 10.1007/s00424-003-1071-6. [PMID:12739170] [DOI] [PubMed] [Google Scholar]
  2. Hirabayashi Y. Nomura KH. Nomura K. The acetyl-CoA transporter family SLC33. Mol Aspects Med. 2013;34:586–589. doi: 10.1016/j.mam.2012.05.009. [PMID:23506891] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Biber J. Hernando N. Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi: 10.1146/annurev-physiol-030212-183748. [PMID:23398154] [DOI] [PubMed] [Google Scholar]
  2. Forster IC. Hernando N. Biber J. Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34:386–395. doi: 10.1016/j.mam.2012.07.007. [PMID:23506879] [DOI] [PubMed] [Google Scholar]
  3. Marks J. Debnam ES. Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299:F285–F296. doi: 10.1152/ajprenal.00508.2009. [PMID:20534868] [DOI] [PubMed] [Google Scholar]
  4. Miyamoto K. Haito-Sugino S. Kuwahara S. Ohi A. Nomura K. Ito M. Kuwahata M. Kido S. Tatsumi S. Kaneko I, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–3730. doi: 10.1002/jps.22614. [PMID:21567407] [DOI] [PubMed] [Google Scholar]
  5. Murer H. Forster I. Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447:763–767. doi: 10.1007/s00424-003-1072-5. [PMID:12750889] [DOI] [PubMed] [Google Scholar]
  6. Shobeiri N. Adams MA. Holden RM. Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12117. [Epub ahead of print]. [PMID:23506202] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Ishida N. Kawakita M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35) Pflugers Arch. 2004;447:768–775. doi: 10.1007/s00424-003-1093-0. [PMID:12759756] [DOI] [PubMed] [Google Scholar]
  2. Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med. 2013;34:590–600. doi: 10.1016/j.mam.2012.12.004. [PMID:23506892] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Boll M. Daniel H. Gasnier B. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch. 2004;447:776–779. doi: 10.1007/s00424-003-1073-4. [PMID:12748860] [DOI] [PubMed] [Google Scholar]
  2. Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]
  3. Thwaites DT. Anderson CM. Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1. Biochim Biophys Acta. 2007;1768:179–197. doi: 10.1016/j.bbamem.2006.10.001. [PMID:17123464] [DOI] [PubMed] [Google Scholar]
  4. Thwaites DT. Anderson CM. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol. 2011;164:1802–1816. doi: 10.1111/j.1476-5381.2011.01438.x. [PMID:21501141] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bartoloni L. Antonarakis SE. The human sugar-phosphate/phosphate exchanger family SLC37. Pflugers Arch. 2004;447:780–783. doi: 10.1007/s00424-003-1105-0. [PMID:12811562] [DOI] [PubMed] [Google Scholar]
  2. Chou JY. Sik Jun H. Mansfield BC. The SLC37 family of phosphate-linked sugar phosphate antiporters. Mol Aspects Med. 2013;34:601–611. doi: 10.1016/j.mam.2012.05.010. [PMID:23506893] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bröer S. Palacín M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193–211. doi: 10.1042/BJ20101912. [PMID:21568940] [DOI] [PubMed] [Google Scholar]
  2. Hägglund MG. Sreedharan S. Nilsson VC. Shaik JH. Almkvist IM. Bäcklin S. Wrange O. Fredriksson R. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem. 2011;286:20500–20511. doi: 10.1074/jbc.M110.162404. [PMID:21511949] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mackenzie B. Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447:784–795. doi: 10.1007/s00424-003-1117-9. [PMID:12845534] [DOI] [PubMed] [Google Scholar]
  4. Schiöth HB. Roshanbin S. Hägglund MG. Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID:23506890] [DOI] [PubMed] [Google Scholar]
  5. Sundberg BE. Wååg E. Jacobsson JA. Stephansson O. Rumaks J. Svirskis S. Alsiö J. Roman E. Ebendal T. Klusa V, et al. The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32, SLC36, and SLC38. J Mol Neurosci. 2008;35:179–193. doi: 10.1007/s12031-008-9046-x. [PMID:18418736] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447:796–800. doi: 10.1007/s00424-003-1074-3. [PMID:12748861] [DOI] [PubMed] [Google Scholar]
  2. Franz MC. Anderle P. Bürzle M. Suzuki Y. Freeman MR. Hediger MA. Kovacs G. Zinc transporters in prostate cancer. Mol Aspects Med. 2013;34:735–741. doi: 10.1016/j.mam.2012.11.007. [PMID:23506906] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Himeno S. Yanagiya T. Fujishiro H. The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie. 2009;91:1218–1222. doi: 10.1016/j.biochi.2009.04.002. [PMID:19375483] [DOI] [PubMed] [Google Scholar]
  4. Jeong J. Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011. [PMID:23506894] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551. doi: 10.1007/s00125-010-1793-x. [PMID:20490449] [DOI] [PubMed] [Google Scholar]
  6. Thévenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 2010;23:857–875. doi: 10.1007/s10534-010-9309-1. [PMID:20204475] [DOI] [PubMed] [Google Scholar]

Further reading

  1. McKie AT. Barlow DJ. The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1) Pflugers Arch. 2004;447:801–806. doi: 10.1007/s00424-003-1102-3. [PMID:12836025] [DOI] [PubMed] [Google Scholar]
  2. Montalbetti N. Simonin A. Kovacs G. Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 2013;34:270–287. doi: 10.1016/j.mam.2013.01.002. [PMID:23506870] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Moomaw AS. Maguire ME. The unique nature of mg2+ channels. Physiology (Bethesda) 2008;23:275–285. doi: 10.1152/physiol.00019.2008. [PMID:18927203] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Payandeh J. Pfoh R. Pai EF. The structure and regulation of magnesium selective ion channels. Biochim Biophys Acta. 2013 doi: 10.1016/j.bbamem.2013.08.002. [Epub ahead of print]. [PMID:23954807] [DOI] [PubMed] [Google Scholar]
  3. Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol, Cell Physiol. 2010;298:C407–C429. doi: 10.1152/ajpcell.00124.2009. [PMID:19940067] [DOI] [PubMed] [Google Scholar]
  4. Sahni J. Scharenberg AM. The SLC41 family of MgtE-like magnesium transporters. Mol Aspects Med. 2013;34:620–628. doi: 10.1016/j.mam.2012.05.012. [PMID:23506895] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bodoy S. Fotiadis D. Stoeger C. Kanai Y. Palacín M. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1. Mol Aspects Med. 2013;34:638–645. doi: 10.1016/j.mam.2012.12.006. [PMID:23268354] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Lockman PR. Allen DD. The transport of choline. Drug Dev Ind Pharm. 2002;28:749–771. doi: 10.1081/ddc-120005622. [PMID:12236062] [DOI] [PubMed] [Google Scholar]
  2. Michel V. Yuan Z. Ramsubir S. Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 2006;231:490–504. doi: 10.1177/153537020623100503. [PMID:16636297] [DOI] [PubMed] [Google Scholar]
  3. Traiffort E. O'Regan S. Ruat M. The choline transporter-like family SLC44: properties and roles in human diseases. Mol Aspects Med. 2013;34:646–654. doi: 10.1016/j.mam.2012.10.011. [PMID:23506897] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Vitavska O. Wieczorek H. The SLC45 gene family of putative sugar transporters. Mol Aspects Med. 2013;34:655–660. doi: 10.1016/j.mam.2012.05.014. [PMID:23506898] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Anderson CM. Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2010;25:364–377. doi: 10.1152/physiol.00027.2010. [PMID:21186281] [DOI] [PubMed] [Google Scholar]
  2. Desmoulin SK. Hou Z. Gangjee A. Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther. 2012;13:1355–1373. doi: 10.4161/cbt.22020. [PMID:22954694] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Thwaites DT. Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol. 2007;92:603–619. doi: 10.1113/expphysiol.2005.029959. [PMID:17468205] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Zhao R. Diop-Bove N. Visentin M. Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi: 10.1146/annurev-nutr-072610-145133. [PMID:21568705] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Zhao R. Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med. 2013;34:373–385. doi: 10.1016/j.mam.2012.07.006. [PMID:23506878] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Damme K. Nies AT. Schaeffeler E. Schwab M. Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab Rev. 2011;43:499–523. doi: 10.3109/03602532.2011.602687. [PMID:21923552] [DOI] [PubMed] [Google Scholar]
  2. Motohashi H. Inui K. Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol Aspects Med. 2013;34:661–668. doi: 10.1016/j.mam.2012.11.004. [PMID:23506899] [DOI] [PubMed] [Google Scholar]
  3. Terada T. Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A) Biochem Pharmacol. 2008;75:1689–1696. doi: 10.1016/j.bcp.2007.12.008. [PMID:18262170] [DOI] [PubMed] [Google Scholar]
  4. Yonezawa A. Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011;164:1817–1825. doi: 10.1111/j.1476-5381.2011.01394.x. [PMID:21457222] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Khan AA. Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med. 2013;34:669–682. doi: 10.1016/j.mam.2012.07.013. [PMID:23506900] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Khan AA. Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta. 2011;1813:668–682. doi: 10.1016/j.bbamcr.2011.01.008. [PMID:21238504] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Khan AA. Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med. 2013;34:669–682. doi: 10.1016/j.mam.2012.07.013. [PMID:23506900] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Krishnamurthy P. Xie T. Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114:345–358. doi: 10.1016/j.pharmthera.2007.02.001. [PMID:17368550] [DOI] [PubMed] [Google Scholar]
  4. Latunde-Dada GO. Simpson RJ. McKie AT. Recent advances in mammalian haem transport. Trends Biochem Sci. 2006;31:182–188. doi: 10.1016/j.tibs.2006.01.005. [PMID:16487711] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34:183–196. doi: 10.1016/j.mam.2012.11.002. [PMID:23506865] [DOI] [PubMed] [Google Scholar]
  2. Wright EM. Loo DD. Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID:21527736] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Ballatori N. Pleiotropic functions of the organic solute transporter Ostα-Ostβ. Dig Dis. 2011;29:13–17. doi: 10.1159/000324123. [PMID:21691099] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballatori N. Christian WV. Wheeler SG. Hammond CL. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol Aspects Med. 2013;34:683–692. doi: 10.1016/j.mam.2012.11.005. [PMID:23506901] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dawson PA. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol. 2011;201:169–203. doi: 10.1007/978-3-642-14541-4_4. [PMID:21103970] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Yamamoto S. Inoue K. Ohta KY. Fukatsu R. Maeda JY. Yoshida Y. Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J Biochem. 2009;145:437–443. doi: 10.1093/jb/mvn181. [PMID:19122205] [DOI] [PubMed] [Google Scholar]
  2. Yonezawa A. Inui K. Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med. 2013;34:693–701. doi: 10.1016/j.mam.2012.07.014. [PMID:23506902] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Hagenbuch B. Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther. 2010;87:39–47. doi: 10.1038/clpt.2009.235. [PMID:19924123] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hagenbuch B. Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–665. doi: 10.1007/s00424-003-1168-y. [PMID:14579113] [DOI] [PubMed] [Google Scholar]
  3. König J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol. 2011;201:1–28. doi: 10.1007/978-3-642-14541-4_1. [PMID:21103967] [DOI] [PubMed] [Google Scholar]
  4. Niemi M. Pasanen MK. Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–181. doi: 10.1124/pr.110.002857. [PMID:21245207] [DOI] [PubMed] [Google Scholar]

References

  • 1.Bakos E, Homolya L. Pflugers Arch. 2007;453:621–641. doi: 10.1007/s00424-006-0160-8. [PMID: 17187268 ] [DOI] [PubMed] [Google Scholar]
  • 2.Borst P, et al. Pflugers Arch. 2007;453:661–673. doi: 10.1007/s00424-006-0054-9. [PMID: 16586096 ] [DOI] [PubMed] [Google Scholar]
  • 3.Chen ZQ, et al. J Biol Chem. 2006;281:7452–7457. doi: 10.1074/jbc.M510603200. [PMID: 16421098 ] [DOI] [PubMed] [Google Scholar]
  • 4.Elliott AM, Al-Hajj MA. Mol Cancer Res. 2009;7:79–87. doi: 10.1158/1541-7786.MCR-08-0235. [PMID: 19147539 ] [DOI] [PubMed] [Google Scholar]
  • 5.Helias V, et al. Nat Genet. 2012;44:170–173. doi: 10.1038/ng.1069. [PMID: 22246506 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hollingworth P, et al. Nat Genet. 2011;43:429–435. doi: 10.1038/ng.803. [PMID: 21460840 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kamakura A, et al. Biochem Biophys Res Commun. 2008;377:847–851. doi: 10.1016/j.bbrc.2008.10.078. [PMID: 18952056 ] [DOI] [PubMed] [Google Scholar]
  • 8.Kashiwayama Y, et al. Exp Cell Res. 2009;315:190–205. doi: 10.1016/j.yexcr.2008.10.031. [PMID: 19010322 ] [DOI] [PubMed] [Google Scholar]
  • 9.Kemp S, et al. Br J Pharmacol. 2011;164:1753–1766. doi: 10.1111/j.1476-5381.2011.01435.x. [PMID: 21488864 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kerr ID, et al. Br J Pharmacol. 2011;164:1767–1779. doi: 10.1111/j.1476-5381.2010.01177.x. [PMID: 21175590 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Krishnamurthy PC, et al. Nature. 2006;443:586–589. doi: 10.1038/nature05125. [PMID: 17006453 ] [DOI] [PubMed] [Google Scholar]
  • 12.Leier I, et al. J Biol Chem. 1994;269:27807–27810. [PMID: 7961706 ] [PubMed] [Google Scholar]
  • 13.Oude Elferink RP, Paulusma CC. Pflugers Arch. 2007;453:601–610. doi: 10.1007/s00424-006-0062-9. [PMID: 16622704 ] [DOI] [PubMed] [Google Scholar]
  • 14.Paytubi S, et al. J Biol Chem. 2009;284:24061–24073. doi: 10.1074/jbc.M109.031625. [PMID: 19570978 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Pondarre C, et al. Blood. 2007;109:3567–3569. doi: 10.1182/blood-2006-04-015768. [PMID: 17192398 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Reid G, et al. Proc Natl Acad Sci USA. 2003;100:9244–9249. doi: 10.1073/pnas.1033060100. [PMID: 12835412 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Schatton T, et al. Nature. 2008;451:345–349. doi: 10.1038/nature06489. [PMID: 18202660 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Shintre CA, et al. Proc Natl Acad Sci USA. 2013;110:9710–9715. doi: 10.1073/pnas.1217042110. [PMID: 23716676 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Stieger B. Curr Opin Lipidol. 2009;20:176–181. doi: 10.1097/MOL.0b013e32832b677c. [PMID: 19684528 ] [DOI] [PubMed] [Google Scholar]
  • 20.Suzuki H, Sugiyama Y. Semin Liver Dis. 1998;18:359–376. doi: 10.1055/s-2007-1007170. [PMID: 9875554 ] [DOI] [PubMed] [Google Scholar]
  • 21.van Roermund CW, et al. FASEB J. 2008;22:4201–4208. doi: 10.1096/fj.08-110866. [PMID: 18757502 ] [DOI] [PubMed] [Google Scholar]
  • 22.van Roermund CW, et al. Biochim Biophys Acta. 2011;1811:148–152. doi: 10.1016/j.bbalip.2010.11.010. [PMID: 21145416 ] [DOI] [PubMed] [Google Scholar]
  • 23.Zuo Y, et al. J Biol Chem. 2008;283:36624–36635. doi: 10.1074/jbc.M807377200. [PMID: 18957418 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bagrov AY, et al. Pharmacol Rev. 2009;61:9–38. doi: 10.1124/pr.108.000711. [PMID: 19325075 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Chong X, Rahimtula AD. Biochem Pharmacol. 1992;44:1401–1409. doi: 10.1016/0006-2952(92)90542-q. [PMID: 1417961 ] [DOI] [PubMed] [Google Scholar]
  • 26.Hu Z, et al. Nat Genet. 2000;24:61–65. doi: 10.1038/71701. [PMID: 10615129 ] [DOI] [PubMed] [Google Scholar]
  • 27.Lytton J, et al. J Biol Chem. 1991;266:17067–17071. [PMID: 1832668 ] [PubMed] [Google Scholar]
  • 28.Pestov NB, et al. Am J Physiol, Cell Physiol. 2006;291:C366–C374. doi: 10.1152/ajpcell.00042.2006. [PMID: 16525125 ] [DOI] [PubMed] [Google Scholar]
  • 29.Seidler NW, et al. J Biol Chem. 1989;264:17816–17823. [PMID: 2530215 ] [PubMed] [Google Scholar]
  • 30.Tóth A, et al. Biochem Biophys Res Commun. 2002;293:777–782. doi: 10.1016/S0006-291X(02)00293-0. [PMID: 12054538 ] [DOI] [PubMed] [Google Scholar]
  • 31.Amara SG, Arriza JL. Curr Opin Neurobiol. 1993;3:337–344. doi: 10.1016/0959-4388(93)90126-j. [PMID: 8103691 ] [DOI] [PubMed] [Google Scholar]
  • 32.Apricò K, et al. J Neurosci Res. 2004;75:751–759. doi: 10.1002/jnr.20013. [PMID: 14994336 ] [DOI] [PubMed] [Google Scholar]
  • 33.Apricò K, et al. Neurochem Int. 2007;51:507–516. doi: 10.1016/j.neuint.2007.05.011. [PMID: 17590480 ] [DOI] [PubMed] [Google Scholar]
  • 34.Apricó K, et al. J Neurochem. 2001;77:1218–1225. doi: 10.1046/j.1471-4159.2001.00337.x. [PMID: 11389172 ] [DOI] [PubMed] [Google Scholar]
  • 35.Arriza JL, et al. J Biol Chem. 1993;268:15329–15332. [PMID: 8101838 ] [PubMed] [Google Scholar]
  • 36.Bailey CG, et al. J Clin Invest. 2011;121:446–453. doi: 10.1172/JCI44474. [PMID: 21123949 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Beart PM, O'Shea RD. Br J Pharmacol. 2007;150:5–17. doi: 10.1038/sj.bjp.0706949. [PMID: 17088867 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Boudker O, et al. Nature. 2007;445:387–393. doi: 10.1038/nature05455. [PMID: 17230192 ] [DOI] [PubMed] [Google Scholar]
  • 39.Bröer A, et al. J Neurochem. 1999;73:2184–2194. [PMID: 10537079 ] [PubMed] [Google Scholar]
  • 40.Bröer A, et al. Biochem J. 2000;346:705–710. Pt 3 [PMID: 10698697 ] [PMC free article] [PubMed] [Google Scholar]
  • 41.Colleoni S, et al. J Pharmacol Exp Ther. 2008;326:646–656. doi: 10.1124/jpet.107.135251. [PMID: 18451317 ] [DOI] [PubMed] [Google Scholar]
  • 42.Colton CK, et al. J Biomol Screen. 2010;15:653–662. doi: 10.1177/1087057110370998. [PMID: 20508255 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Coon TR, et al. 2004. ) Abstract Viewer/Itinerary Planner, Program No. 168.10. Society for Neuroscience.
  • 44.Dunlop J. Curr Opin Pharmacol. 2006;6:103–107. doi: 10.1016/j.coph.2005.09.004. [PMID: 16368269 ] [DOI] [PubMed] [Google Scholar]
  • 45.Dunlop J, et al. Br J Pharmacol. 2003;140:839–846. doi: 10.1038/sj.bjp.0705509. [PMID: 14517179 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Dunlop J, et al. Mol Pharmacol. 2005;68:974–982. doi: 10.1124/mol.105.012005. [PMID: 16014807 ] [DOI] [PubMed] [Google Scholar]
  • 47.Eliasof S, et al. J Neurochem. 2001;77:550–557. doi: 10.1046/j.1471-4159.2001.00253.x. [PMID: 11299317 ] [DOI] [PubMed] [Google Scholar]
  • 48.Esslinger CS, et al. Neuropharmacology. 2005;49:850–861. doi: 10.1016/j.neuropharm.2005.08.009. [PMID: 16183084 ] [DOI] [PubMed] [Google Scholar]
  • 49.Esslinger CS, et al. Bioorg Med Chem. 2005;13:1111–1118. doi: 10.1016/j.bmc.2004.11.028. [PMID: 15670919 ] [DOI] [PubMed] [Google Scholar]
  • 50.Fontana AC, et al. Mol Pharmacol. 2007;72:1228–1237. doi: 10.1124/mol.107.037127. [PMID: 17646426 ] [DOI] [PubMed] [Google Scholar]
  • 51.Fontana AC, et al. Br J Pharmacol. 2003;139:1297–1309. doi: 10.1038/sj.bjp.0705352. [PMID: 12890709 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Gameiro A, et al. Biophys J. 2011;100:2623–2632. doi: 10.1016/j.bpj.2011.04.034. [PMID: 21641307 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ganel R, et al. Neurobiol Dis. 2006;21:556–567. doi: 10.1016/j.nbd.2005.08.014. [PMID: 16274998 ] [DOI] [PubMed] [Google Scholar]
  • 54.Gebhardt FM, et al. J Biol Chem. 2010;285:31313–31324. doi: 10.1074/jbc.M110.153494. [PMID: 20688910 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Gendreau S, et al. J Biol Chem. 2004;279:39505–39512. doi: 10.1074/jbc.M408038200. [PMID: 15265858 ] [DOI] [PubMed] [Google Scholar]
  • 56.Goursaud S, et al. FASEB J. 2011;25:3674–3686. doi: 10.1096/fj.11-182337. [PMID: 21730107 ] [DOI] [PubMed] [Google Scholar]
  • 57.Grewer C, et al. Biochemistry. 2005;44:11913–11923. doi: 10.1021/bi050987n. [PMID: 16128593 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Grewer C, Grabsch E. J Physiol (Lond) 2004;557:747–759. doi: 10.1113/jphysiol.2004.062521. (Pt 3):. [PMID: 15107471 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Grewer C, Rauen T. J Membr Biol. 2005;203:1–20. doi: 10.1007/s00232-004-0731-6. [PMID: 15834685 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Grunewald M, Kanner BI. J Biol Chem. 2000;275:9684–9689. doi: 10.1074/jbc.275.13.9684. [PMID: 10734120 ] [DOI] [PubMed] [Google Scholar]
  • 61.Huang S, et al. J Biol Chem. 2009;284:4510–4515. doi: 10.1074/jbc.M808495200. [PMID: 19074430 ] [DOI] [PubMed] [Google Scholar]
  • 62.Jensen AA, et al. J Med Chem. 2009;52:912–915. doi: 10.1021/jm8013458. [PMID: 19161278 ] [DOI] [PubMed] [Google Scholar]
  • 63.Jiang J, Amara SG. Neuropharmacology. 2011;60:172–181. doi: 10.1016/j.neuropharm.2010.07.019. [PMID: 20708631 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kanai Y, Hediger MA. Eur J Pharmacol. 2003;479:237–247. doi: 10.1016/j.ejphar.2003.08.073. [PMID: 14612154 ] [DOI] [PubMed] [Google Scholar]
  • 65.Kanai Y, Hediger MA. Pflugers Arch. 2004;447:469–479. doi: 10.1007/s00424-003-1146-4. [PMID: 14530974 ] [DOI] [PubMed] [Google Scholar]
  • 66.Kim K, et al. J Cell Physiol. 2011;226:2484–2493. doi: 10.1002/jcp.22609. [PMID: 21792905 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Koch HP, et al. J Neurosci. 2007;27:2943–2947. doi: 10.1523/JNEUROSCI.0118-07.2007. [PMID: 17360917 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lau CL, et al. Br J Pharmacol. 2011;163:533–545. doi: 10.1111/j.1476-5381.2011.01259.x. [PMID: 21309758 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Leary GP, et al. J Neurosci. 2007;27:2938–2942. doi: 10.1523/JNEUROSCI.4851-06.2007. [PMID: 17360916 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Lee A, Pow DV. Int J Biochem Cell Biol. 2010;42:1901–1906. doi: 10.1016/j.biocel.2010.09.016. [PMID: 20883814 ] [DOI] [PubMed] [Google Scholar]
  • 71.Lee SG, et al. J Biol Chem. 2008;283:13116–13123. doi: 10.1074/jbc.M707697200. [PMID: 18326497 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Levy LM, et al. J Neurosci. 1998;18:9620–9628. doi: 10.1523/JNEUROSCI.18-23-09620.1998. [PMID: 9822723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Machtens JP, et al. J Biol Chem. 2011;286:23780–23788. doi: 10.1074/jbc.M110.207514. [PMID: 21572047 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Nothmann D, et al. J Biol Chem. 2011;286:3935–3943. doi: 10.1074/jbc.M110.187492. [PMID: 21127051 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Oppedisano F, et al. Biochem Pharmacol. 2010;80:1266–1273. doi: 10.1016/j.bcp.2010.06.032. [PMID: 20599776 ] [DOI] [PubMed] [Google Scholar]
  • 76.Palacín M, et al. Physiol Rev. 1998;78:969–1054. doi: 10.1152/physrev.1998.78.4.969. [PMID: 9790568 ] [DOI] [PubMed] [Google Scholar]
  • 77.Pinilla-Tenas J, et al. J Membr Biol. 2003;195:27–32. doi: 10.1007/s00232-003-2041-9. [PMID: 14502423 ] [DOI] [PubMed] [Google Scholar]
  • 78.Reyes N, et al. Nature. 2009;462:880–885. doi: 10.1038/nature08616. [PMID: 19924125 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Romera C, et al. J Cereb Blood Flow Metab. 2007;27:1327–1338. doi: 10.1038/sj.jcbfm.9600438. [PMID: 17213861 ] [DOI] [PubMed] [Google Scholar]
  • 80.Rose EM, et al. J Neurosci. 2009;29:8143–8155. doi: 10.1523/JNEUROSCI.1081-09.2009. [PMID: 19553454 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Rothstein JD, et al. Nature. 2005;433:73–77. doi: 10.1038/nature03180. [PMID: 15635412 ] [DOI] [PubMed] [Google Scholar]
  • 82.Ryan RM, Mindell JA. Nat Struct Mol Biol. 2007;14:365–371. doi: 10.1038/nsmb1230. [PMID: 17435767 ] [DOI] [PubMed] [Google Scholar]
  • 83.Ryan RM, et al. J Biol Chem. 2004;279:20742–20751. doi: 10.1074/jbc.M304433200. [PMID: 14982939 ] [DOI] [PubMed] [Google Scholar]
  • 84.Shigeri Y, et al. J Neurochem. 2001;79:297–302. doi: 10.1046/j.1471-4159.2001.00588.x. [PMID: 11677257 ] [DOI] [PubMed] [Google Scholar]
  • 85.Shimamoto K, et al. Mol Pharmacol. 1998;53:195–201. doi: 10.1124/mol.53.2.195. [PMID: 9463476 ] [DOI] [PubMed] [Google Scholar]
  • 86.Shimamoto K, et al. Mol Pharmacol. 2007;71:294–302. doi: 10.1124/mol.106.027250. [PMID: 17047096 ] [DOI] [PubMed] [Google Scholar]
  • 87.Tamarappoo BK, et al. Biochim Biophys Acta. 1996;1279:131–136. doi: 10.1016/0005-2736(95)00259-6. [PMID: 8603078 ] [DOI] [PubMed] [Google Scholar]
  • 88.Torres-Salazar D, Fahlke C. J Biol Chem. 2007;282:34719–34726. doi: 10.1074/jbc.M704118200. [PMID: 17908688 ] [DOI] [PubMed] [Google Scholar]
  • 89.Utsunomiya-Tate N, et al. J Biol Chem. 1996;271:14883–14890. doi: 10.1074/jbc.271.25.14883. [PMID: 8662767 ] [DOI] [PubMed] [Google Scholar]
  • 90.Vandenberg RJ, et al. Eur J Pharm Sci. 2004;23:1–11. doi: 10.1016/j.ejps.2004.05.006. [PMID: 15324920 ] [DOI] [PubMed] [Google Scholar]
  • 91.Vandenberg RJ, et al. Mol Pharmacol. 1997;51:809–815. doi: 10.1124/mol.51.5.809. [PMID: 9145919 ] [DOI] [PubMed] [Google Scholar]
  • 92.Veruki ML, et al. Nat Neurosci. 2006;9:1388–1396. doi: 10.1038/nn1793. [PMID: 17041592 ] [DOI] [PubMed] [Google Scholar]
  • 93.Yernool D, et al. Nature. 2004;431:811–818. doi: 10.1038/nature03018. [PMID: 15483603 ] [DOI] [PubMed] [Google Scholar]
  • 94.Zerangue N, Kavanaugh MP. J Physiol (Lond) 1996;493:419–423. doi: 10.1113/jphysiol.1996.sp021393. ( Pt 2)[PMID: 8782106 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Zerangue N, Kavanaugh MP. Nature. 1996;383:634–637. doi: 10.1038/383634a0. [PMID: 8857541 ] [DOI] [PubMed] [Google Scholar]
  • 96.Zerangue N, Kavanaugh MP. J Biol Chem. 1996;271:27991–27994. doi: 10.1074/jbc.271.45.27991. [PMID: 8910405 ] [DOI] [PubMed] [Google Scholar]
  • 97.Zhou LM, et al. J Pharmacol Exp Ther. 1997;280:422–427. [PMID: 8996224 ] [PubMed] [Google Scholar]
  • 98.Zou S, et al. J Neurochem. 2011;117:833–840. doi: 10.1111/j.1471-4159.2011.07250.x. [PMID: 21426345 ] [DOI] [PubMed] [Google Scholar]
  • 99.Bianchi J, Rose RC. Proc Soc Exp Biol Med. 1986;181:333–337. doi: 10.3181/00379727-181-42261. [PMID: 3945643 ] [DOI] [PubMed] [Google Scholar]
  • 100.Di Daniel E, et al. BMC Cell Biol. 2009;10:54–PMID. doi: 10.1186/1471-2121-10-54. 19607714 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Ibberson M, et al. J Biol Chem. 2000;275:4607–4612. doi: 10.1074/jbc.275.7.4607. [PMID: 10671487 ] [DOI] [PubMed] [Google Scholar]
  • 102.Lee YC, et al. Hum Mol Genet. 2010;19:3721–3733. doi: 10.1093/hmg/ddq286. [PMID: 20639396 ] [DOI] [PubMed] [Google Scholar]
  • 103.Rogers S, et al. Biochem Biophys Res Commun. 2003;308:422–426. doi: 10.1016/s0006-291x(03)01417-7. [PMID: 12914765 ] [DOI] [PubMed] [Google Scholar]
  • 104.Uldry M, et al. FEBS Lett. 2002;524:199–203. doi: 10.1016/s0014-5793(02)03058-2. [PMID: 12135767 ] [DOI] [PubMed] [Google Scholar]
  • 105.Wu X, Freeze HH. Genomics. 2002;80:553–557. doi: 10.1006/geno.2002.7010. [PMID: 12504846 ] [DOI] [PubMed] [Google Scholar]
  • 106.Wolf S, et al. Biochem J. 2002;364:767–775. doi: 10.1042/BJ20020084. (Pt 3):. [PMID: 12049641 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Abramson J, Wright EM. Curr Opin Struct Biol. 2009;19:425–432. doi: 10.1016/j.sbi.2009.06.002. [PMID: 19631523 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Aouameur R, et al. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1300–G1307. doi: 10.1152/ajpgi.00422.2007. [PMID: 17932225 ] [DOI] [PubMed] [Google Scholar]
  • 109.Apparsundaram S, et al. Biochem Biophys Res Commun. 2000;276:862–867. doi: 10.1006/bbrc.2000.3561. [PMID: 11027560 ] [DOI] [PubMed] [Google Scholar]
  • 110.Bissonnette P, et al. J Physiol (Lond) 2004;558:759–768. doi: 10.1113/jphysiol.2004.064311. (Pt 3):. [PMID: 15181167 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Bizhanova A, Kopp P. Endocrinology. 2009;150:1084–1090. doi: 10.1210/en.2008-1437. [PMID: 19196800 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Bourgeois F, et al. J Physiol (Lond) 2005;563:333–343. doi: 10.1113/jphysiol.2004.076679. (Pt 2):. [PMID: 15613375 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Chao EC, Henry RR. Nat Rev Drug Discov. 2010;9:551–559. doi: 10.1038/nrd3180. [PMID: 20508640 ] [DOI] [PubMed] [Google Scholar]
  • 114.Coady MJ, et al. Biophys J. 2007;93:2325–2331. doi: 10.1529/biophysj.107.108555. [PMID: 17526579 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Coady MJ, et al. J Biol Chem. 2002;277:35219–35224. doi: 10.1074/jbc.M204321200. [PMID: 12133831 ] [DOI] [PubMed] [Google Scholar]
  • 116.de Carvalho FD, Quick M. J Biol Chem. 2011;286:131–137. doi: 10.1074/jbc.M110.167197. [PMID: 20980265 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Diez-Sampedro A, et al. Proc Natl Acad Sci USA. 2003;100:11753–11758. doi: 10.1073/pnas.1733027100. [PMID: 13130073 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Dohán O, et al. Proc Natl Acad Sci USA. 2007;104:20250–20255. doi: 10.1073/pnas.0707207104. [PMID: 18077370 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Eskandari S, et al. J Biol Chem. 1997;272:27230–27238. doi: 10.1074/jbc.272.43.27230. [PMID: 9341168 ] [DOI] [PubMed] [Google Scholar]
  • 120.Ferguson SM, et al. Proc Natl Acad Sci USA. 2004;101:8762–8767. doi: 10.1073/pnas.0401667101. [PMID: 15173594 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Ferguson SM, Blakely RD. Mol Interv. 2004;4:22–37. doi: 10.1124/mi.4.1.22. [PMID: 14993474 ] [DOI] [PubMed] [Google Scholar]
  • 122.Ganapathy V, et al. AAPS J. 2008;10:193–199. doi: 10.1208/s12248-008-9022-y. [PMID: 18446519 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Ganapathy V, et al. Pharmacol Ther. 2009;121:29–40. doi: 10.1016/j.pharmthera.2008.09.005. [PMID: 18992769 ] [DOI] [PubMed] [Google Scholar]
  • 124.Gopal E, et al. Biochem J. 2005;388:309–316. doi: 10.1042/BJ20041916. (Pt 1):. [PMID: 15651982 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Gupta N, et al. Life Sci. 2006;78:2419–2425. doi: 10.1016/j.lfs.2005.10.028. [PMID: 16375929 ] [DOI] [PubMed] [Google Scholar]
  • 126.Hager K, et al. J Membr Biol. 1995;143:103–113. doi: 10.1007/BF00234656. [PMID: 7537337 ] [DOI] [PubMed] [Google Scholar]
  • 127.Hummel CS, et al. Am J Physiol, Cell Physiol. 2011;300:C14–C21. doi: 10.1152/ajpcell.00388.2010. [PMID: 20980548 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Iwamoto H, et al. J Neurosci. 2006;26:9851–9859. doi: 10.1523/JNEUROSCI.1862-06.2006. [PMID: 17005849 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Kanai Y, et al. J Clin Invest. 1994;93:397–404. doi: 10.1172/JCI116972. [PMID: 8282810 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Krishnaswamy A, Cooper E. Neuron. 2009;61:272–286. doi: 10.1016/j.neuron.2008.11.025. [PMID: 19186169 ] [DOI] [PubMed] [Google Scholar]
  • 131.Lin X, et al. Arch Biochem Biophys. 2009;481:197–201. doi: 10.1016/j.abb.2008.11.008. [PMID: 19032932 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Miyauchi S, et al. J Biol Chem. 2004;279:13293–13296. doi: 10.1074/jbc.C400059200. [PMID: 14966140 ] [DOI] [PubMed] [Google Scholar]
  • 133.Okuda T, Haga T. FEBS Lett. 2000;484:92–97. doi: 10.1016/s0014-5793(00)02134-7. [PMID: 11068039 ] [DOI] [PubMed] [Google Scholar]
  • 134.Prasad PD, et al. Biochem Biophys Res Commun. 2000;270:836–840. doi: 10.1006/bbrc.2000.2498. [PMID: 10772912 ] [DOI] [PubMed] [Google Scholar]
  • 135.Said HM. J Nutr. 2009;139:158–162. doi: 10.3945/jn.108.092023. [PMID: 19056639 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Said HM, et al. Am J Clin Nutr. 1989;49:127–131. doi: 10.1093/ajcn/49.1.127. [PMID: 2911998 ] [DOI] [PubMed] [Google Scholar]
  • 137.Singh N, et al. J Biol Chem. 2010;285:27601–27608. doi: 10.1074/jbc.M110.102947. [PMID: 20601425 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Thangaraju M, et al. J Biol Chem. 2006;281:26769–26773. doi: 10.1074/jbc.C600189200. [PMID: 16873376 ] [DOI] [PubMed] [Google Scholar]
  • 139.Thangaraju M, et al. Cancer Res. 2006;66:11560–11564. doi: 10.1158/0008-5472.CAN-06-1950. [PMID: 17178845 ] [DOI] [PubMed] [Google Scholar]
  • 140.Traiffort E, et al. J Neurochem. 2005;92:1116–1125. doi: 10.1111/j.1471-4159.2004.02962.x. [PMID: 15715662 ] [DOI] [PubMed] [Google Scholar]
  • 141.Wang H, et al. J Biol Chem. 1999;274:14875–14883. doi: 10.1074/jbc.274.21.14875. [PMID: 10329687 ] [DOI] [PubMed] [Google Scholar]
  • 142.Wright EM, et al. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. [PMID: 21527736 ] [DOI] [PubMed] [Google Scholar]
  • 143.Wright EM, Turk E. Pflugers Arch. 2004;447:510–518. doi: 10.1007/s00424-003-1063-6. [PMID: 12748858 ] [DOI] [PubMed] [Google Scholar]
  • 144.Anderson CM, et al. J Physiol (Lond) 2008;586:4061–4067. doi: 10.1113/jphysiol.2008.154500. (Pt 17):. [PMID: 18599538 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Anderson CM, et al. J Physiol (Lond) 2009;587:731–744. doi: 10.1113/jphysiol.2008.164228. (Pt 4):. [PMID: 19074966 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Aubrey KR, et al. Mol Pharmacol. 2000;58:129–135. doi: 10.1124/mol.58.1.129. [PMID: 10860934 ] [DOI] [PubMed] [Google Scholar]
  • 147.Bergeron R, et al. Proc Natl Acad Sci USA. 1998;95:15730–15734. doi: 10.1073/pnas.95.26.15730. [PMID: 9861038 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Betz H, et al. Biochem Soc Trans. 2006;34:55–58. doi: 10.1042/BST0340055. (Pt 1):. [PMID: 16417482 ] [DOI] [PubMed] [Google Scholar]
  • 149.Brown A, et al. Bioorg Med Chem Lett. 2001;11:2007–2009. doi: 10.1016/s0960-894x(01)00355-9. [PMID: 11454468 ] [DOI] [PubMed] [Google Scholar]
  • 150.Bröer A, et al. Mol Membr Biol. 2009;26:333–346. doi: 10.1080/09687680903150027. [PMID: 19657969 ] [DOI] [PubMed] [Google Scholar]
  • 151.Bröer A, et al. Biochem J. 2006;393:421–430. doi: 10.1042/BJ20051273. (Pt 1):. [PMID: 16185194 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Bröer S. Neurochem Int. 2006;48:559–567. doi: 10.1016/j.neuint.2005.11.021. [PMID: 16540203 ] [DOI] [PubMed] [Google Scholar]
  • 153.Bröer S. Physiology (Bethesda) 2008;23:95–103. doi: 10.1152/physiol.00045.2007. [PMID: 18400692 ] [DOI] [PubMed] [Google Scholar]
  • 154.Böhmer C, et al. Biochem J. 2005;389:745–751. doi: 10.1042/BJ20050083. (Pt 3):. [PMID: 15804236 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Carland JE, et al. Br J Pharmacol. 2013;168:891–902. doi: 10.1111/j.1476-5381.2012.02213.x. [PMID: 22978602 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Chen NH, et al. Pflugers Arch. 2004;447:519–531. doi: 10.1007/s00424-003-1064-5. [PMID: 12719981 ] [DOI] [PubMed] [Google Scholar]
  • 157.Clausen RP, et al. Adv Pharmacol. 2006;54:265–284. doi: 10.1016/s1054-3589(06)54011-6. [PMID: 17175818 ] [DOI] [PubMed] [Google Scholar]
  • 158.Cohen-Kfir E, et al. Proc Natl Acad Sci USA. 2005;102:6154–6159. doi: 10.1073/pnas.0501431102. [PMID: 15829583 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Dai W, et al. Arch Biochem Biophys. 1999;361:75–84. doi: 10.1006/abbi.1998.0959. [PMID: 9882430 ] [DOI] [PubMed] [Google Scholar]
  • 160.Dhar TG, et al. J Med Chem. 1994;37:2334–2342. doi: 10.1021/jm00041a012. [PMID: 8057281 ] [DOI] [PubMed] [Google Scholar]
  • 161.Dodd JR, Christie DL. J Biol Chem. 2007;282:15528–15533. doi: 10.1074/jbc.M611705200. [PMID: 17400549 ] [DOI] [PubMed] [Google Scholar]
  • 162.Edington AR, et al. J Biol Chem. 2009;284:36424–36430. doi: 10.1074/jbc.M109.017509. [PMID: 19875446 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Eulenburg V, et al. Trends Biochem Sci. 2005;30:325–333. doi: 10.1016/j.tibs.2005.04.004. [PMID: 15950877 ] [DOI] [PubMed] [Google Scholar]
  • 164.Forrest LR, Rudnick G. Physiology (Bethesda) 2009;24:377–386. doi: 10.1152/physiol.00030.2009. [PMID: 19996368 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Fülep GH, et al. Eur J Med Chem. 2006;41:809–824. doi: 10.1016/j.ejmech.2006.01.019. [PMID: 16766089 ] [DOI] [PubMed] [Google Scholar]
  • 166.Gabernet L, et al. Neurosci Lett. 2005;373:79–84. doi: 10.1016/j.neulet.2004.09.064. [PMID: 15555781 ] [DOI] [PubMed] [Google Scholar]
  • 167.Gomeza J, et al. Handb Exp Pharmacol. 2006;175:457–483. doi: 10.1007/3-540-29784-7_19. [PMID: 16722246 ] [DOI] [PubMed] [Google Scholar]
  • 168.Gomeza J, et al. Neuron. 2003;40:785–796. doi: 10.1016/s0896-6273(03)00672-x. [PMID: 14622582 ] [DOI] [PubMed] [Google Scholar]
  • 169.Gomeza J, et al. Neuron. 2003;40:797–806. doi: 10.1016/s0896-6273(03)00673-1. [PMID: 14622583 ] [DOI] [PubMed] [Google Scholar]
  • 170.Gu H, et al. J Biol Chem. 1994;269:7124–7130. [PMID: 8125921 ] [PubMed] [Google Scholar]
  • 171.Gu HH, et al. J Biol Chem. 1996;271:6911–6916. doi: 10.1074/jbc.271.12.6911. [PMID: 8636118 ] [DOI] [PubMed] [Google Scholar]
  • 172.Han X, et al. Acta Physiol (Oxf) 2006;187:61–73. doi: 10.1111/j.1748-1716.2006.01573.x. [PMID: 16734743 ] [DOI] [PubMed] [Google Scholar]
  • 173.Harvey RJ, et al. Trends Genet. 2008;24:439–447. doi: 10.1016/j.tig.2008.06.005. [PMID: 18707791 ] [DOI] [PubMed] [Google Scholar]
  • 174.Hatanaka T, et al. J Clin Invest. 2001;107:1035–1043. doi: 10.1172/JCI12060. [PMID: 11306607 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Jeong HJ, et al. Br J Pharmacol. 2010;161:925–935. doi: 10.1111/j.1476-5381.2010.00935.x. [PMID: 20860669 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Ju P, et al. J Biol Chem. 2004;279:22983–22991. doi: 10.1074/jbc.M312484200. [PMID: 15031290 ] [DOI] [PubMed] [Google Scholar]
  • 177.Karunakaran S, et al. Biochem J. 2008;414:343–355. doi: 10.1042/BJ20080622. [PMID: 18522536 ] [DOI] [PubMed] [Google Scholar]
  • 178.Knutsen LJ, et al. J Med Chem. 1999;42:3447–3462. doi: 10.1021/jm981027k. [PMID: 10479278 ] [DOI] [PubMed] [Google Scholar]
  • 179.Kristensen AS, et al. Pharmacol Rev. 2011;63:585–640. doi: 10.1124/pr.108.000869. [PMID: 21752877 ] [DOI] [PubMed] [Google Scholar]
  • 180.Kvist T, et al. Comb Chem High Throughput Screen. 2009;12:241–249. doi: 10.2174/138620709787581684. [PMID: 19275529 ] [DOI] [PubMed] [Google Scholar]
  • 181.Madsen KK, et al. Pharmacol Ther. 2010;125:394–401. doi: 10.1016/j.pharmthera.2009.11.007. [PMID: 20026354 ] [DOI] [PubMed] [Google Scholar]
  • 182.Mallorga PJ, et al. Neuropharmacology. 2003;45:585–593. doi: 10.1016/s0028-3908(03)00227-2. [PMID: 12941372 ] [DOI] [PubMed] [Google Scholar]
  • 183.Mezler M, et al. Mol Pharmacol. 2008;74:1705–1715. doi: 10.1124/mol.108.049312. [PMID: 18815213 ] [DOI] [PubMed] [Google Scholar]
  • 184.Núñez E, et al. Br J Pharmacol. 2000;129:200–206. doi: 10.1038/sj.bjp.0703049. [PMID: 10694221 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Pearlman RJ, et al. J Neurochem. 2003;84:592–601. doi: 10.1046/j.1471-4159.2003.01549.x. [PMID: 12558979 ] [DOI] [PubMed] [Google Scholar]
  • 186.Pristupa ZB, et al. Mol Pharmacol. 1994;45:125–135. [PMID: 8302271 ] [PubMed] [Google Scholar]
  • 187.Pérez-Siles G, et al. J Neurochem. 2011;118:195–204. doi: 10.1111/j.1471-4159.2011.07309.x. [PMID: 21574997 ] [DOI] [PubMed] [Google Scholar]
  • 188.Rousseau F, et al. J Neurosci. 2008;28:9755–9768. doi: 10.1523/JNEUROSCI.0509-08.2008. [PMID: 18815261 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Saier MH, et al. Nucleic Acids Res. 2009;37:Database issue. doi: 10.1093/nar/gkn862. ): D274–D278. [PMID: 19022853 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Schousboe A, et al. Future Med Chem. 2011;3:183–187. doi: 10.4155/fmc.10.288. [PMID: 21428813 ] [DOI] [PubMed] [Google Scholar]
  • 191.Schousboe A, et al. Biochem Pharmacol. 2004;68:1557–1563. doi: 10.1016/j.bcp.2004.06.041. [PMID: 15451399 ] [DOI] [PubMed] [Google Scholar]
  • 192.Semyanov A, et al. Trends Neurosci. 2004;27:262–269. doi: 10.1016/j.tins.2004.03.005. [PMID: 15111008 ] [DOI] [PubMed] [Google Scholar]
  • 193.Singer D, et al. J Biol Chem. 2009;284:19953–19960. doi: 10.1074/jbc.M109.011171. [PMID: 19478081 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Singh SK, et al. Nature. 2007;448:952–956. doi: 10.1038/nature06038. [PMID: 17687333 ] [DOI] [PubMed] [Google Scholar]
  • 195.Sloan JL, Mager S. J Biol Chem. 1999;274:23740–23745. doi: 10.1074/jbc.274.34.23740. [PMID: 10446133 ] [DOI] [PubMed] [Google Scholar]
  • 196.Supplisson S, Roux MJ. FEBS Lett. 2002;529:93–101. doi: 10.1016/s0014-5793(02)03251-9. [PMID: 12354619 ] [DOI] [PubMed] [Google Scholar]
  • 197.Talvenheimo J, et al. J Biol Chem. 1983;258:6115–6119. [PMID: 6853478 ] [PubMed] [Google Scholar]
  • 198.Tatsumi M, et al. Eur J Pharmacol. 1997;340:249–258. doi: 10.1016/s0014-2999(97)01393-9. [PMID: 9537821 ] [DOI] [PubMed] [Google Scholar]
  • 199.Tsai G, et al. Proc Natl Acad Sci USA. 2004;101:8485–8490. doi: 10.1073/pnas.0402662101. [PMID: 15159536 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Umapathy NS, et al. Pharm Res. 2004;21:1303–1310. doi: 10.1023/b:pham.0000033019.49737.28. [PMID: 15290873 ] [DOI] [PubMed] [Google Scholar]
  • 201.Vandenberg RJ, et al. Eur J Pharm Sci. 2004;23:1–11. doi: 10.1016/j.ejps.2004.05.006. [PMID: 15324920 ] [DOI] [PubMed] [Google Scholar]
  • 202.Vandenberg RJ, et al. J Biol Chem. 2007;282:14447–14453. doi: 10.1074/jbc.M609158200. [PMID: 17383967 ] [DOI] [PubMed] [Google Scholar]
  • 203.Vanslambrouck JM, et al. Biochem J. 2010;428:397–407. doi: 10.1042/BJ20091667. [PMID: 20377526 ] [DOI] [PubMed] [Google Scholar]
  • 204.Wiles AL, et al. J Neurochem. 2006;99:781–786. doi: 10.1111/j.1471-4159.2006.04107.x. [PMID: 16899062 ] [DOI] [PubMed] [Google Scholar]
  • 205.Wong EH, et al. Biol Psychiatry. 2000;47:818–829. doi: 10.1016/s0006-3223(99)00291-7. [PMID: 10812041 ] [DOI] [PubMed] [Google Scholar]
  • 206.Yamashita A, et al. Nature. 2005;437:215–223. doi: 10.1038/nature03978. [PMID: 16041361 ] [DOI] [PubMed] [Google Scholar]
  • 207.Yee BK, et al. J Neurosci. 2006;26:3169–3181. doi: 10.1523/JNEUROSCI.5120-05.2006. [PMID: 16554468 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Yu XC, et al. Neurosci Lett. 2009;451:212–216. doi: 10.1016/j.neulet.2009.01.018. [PMID: 19159658 ] [DOI] [PubMed] [Google Scholar]
  • 209.Zaia KA, Reimer RJ. J Biol Chem. 2009;284:8439–8448. doi: 10.1074/jbc.M806407200. [PMID: 19147495 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Zhang HX, et al. J Physiol (Lond) 2009;587:3207–3220. doi: 10.1113/jphysiol.2009.168757. (Pt 13):. [PMID: 19433577 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Dong H, et al. Biophys J. 2002;82:1943–1952. doi: 10.1016/S0006-3495(02)75543-4. [PMID: 11916852 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Jost N, et al. Br J Pharmacol. 2013 doi: 10.1111/bph.12228. [Epub ahead of print]. [PMID: 23647096 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Counillon L, et al. Mol Pharmacol. 1993;44:1041–1045. [PMID: 8246907 ] [PubMed] [Google Scholar]
  • 214.Lee SH, et al. Biochem Biophys Res Commun. 2008;369:320–326. doi: 10.1016/j.bbrc.2008.01.168. [PMID: 18269914 ] [DOI] [PubMed] [Google Scholar]
  • 215.Miyazaki E, et al. J Biol Chem. 2001;276:49221–49227. doi: 10.1074/jbc.M106267200. [PMID: 11641397 ] [DOI] [PubMed] [Google Scholar]
  • 216.Nakamura N, et al. J Biol Chem. 2005;280:1561–1572. doi: 10.1074/jbc.M410041200. [PMID: 15522866 ] [DOI] [PubMed] [Google Scholar]
  • 217.Numata M, Orlowski J. J Biol Chem. 2001;276:17387–17394. doi: 10.1074/jbc.M101319200. [PMID: 11279194 ] [DOI] [PubMed] [Google Scholar]
  • 218.Tse CM, et al. Proc Natl Acad Sci USA. 1993;90:9110–9114. doi: 10.1073/pnas.90.19.9110. [PMID: 8415663 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Tse CM, et al. J Biol Chem. 1993;268:11917–11924. [PMID: 7685025 ] [PubMed] [Google Scholar]
  • 220.Wang D, et al. Nat Cell Biol. 2003;5:1117–1122. doi: 10.1038/ncb1072. [PMID: 14634667 ] [DOI] [PubMed] [Google Scholar]
  • 221.Banerjee A, Swaan PW. Biochemistry. 2006;45:943–953. doi: 10.1021/bi052202j. [PMID: 16411770 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Bhat BG, et al. J Lipid Res. 2003;44:1614–1621. doi: 10.1194/jlr.M200469-JLR200. [PMID: 12810816 ] [DOI] [PubMed] [Google Scholar]
  • 223.Burger S, et al. Neuroscience. 2011;193:109–121. doi: 10.1016/j.neuroscience.2011.06.068. [PMID: 21742018 ] [DOI] [PubMed] [Google Scholar]
  • 224.Craddock AL, et al. Am J Physiol. 1998;274(1):G157–G169. doi: 10.1152/ajpgi.1998.274.1.G157. Pt 1):. [PMID: 9458785 ] [DOI] [PubMed] [Google Scholar]
  • 225.Dawson PA, et al. J Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. [PMID: 19498215 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Dong Z, et al. Mol Pharm. 2013;10:1008–1019. doi: 10.1021/mp300453k. [PMID: 23339484 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Fernandes CF, et al. Biochem Biophys Res Commun. 2007;361:26–32. doi: 10.1016/j.bbrc.2007.06.160. [PMID: 17632081 ] [DOI] [PubMed] [Google Scholar]
  • 228.Geyer J, et al. J Biol Chem. 2007;282:19728–19741. doi: 10.1074/jbc.M702663200. [PMID: 17491011 ] [DOI] [PubMed] [Google Scholar]
  • 229.Geyer J, et al. Neuroscience. 2008;152:990–1005. doi: 10.1016/j.neuroscience.2008.01.049. [PMID: 18355966 ] [DOI] [PubMed] [Google Scholar]
  • 230.Geyer J, et al. Biochem Biophys Res Commun. 2004;316:300–306. doi: 10.1016/j.bbrc.2004.02.048. [PMID: 15020217 ] [DOI] [PubMed] [Google Scholar]
  • 231.Godoy JR, et al. Eur J Cell Biol. 2007;86:445–460. doi: 10.1016/j.ejcb.2007.06.001. [PMID: 17628207 ] [DOI] [PubMed] [Google Scholar]
  • 232.Hallén S, et al. Biochemistry. 1999;38:11379–11388. doi: 10.1021/bi990554i. [PMID: 10471288 ] [DOI] [PubMed] [Google Scholar]
  • 233.Kim RB, et al. J Pharmacol Exp Ther. 1999;291:1204–1209. [PMID: 10565843 ] [PubMed] [Google Scholar]
  • 234.Klaassen CD, Aleksunes LM. Pharmacol Rev. 2010;62:1–96. doi: 10.1124/pr.109.002014. [PMID: 20103563 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Meier PJ, et al. Hepatology. 1997;26:1667–1677. doi: 10.1002/hep.510260641. [PMID: 9398014 ] [DOI] [PubMed] [Google Scholar]
  • 236.Tollefson MB, et al. Bioorg Med Chem Lett. 2003;13:3727–3730. doi: 10.1016/j.bmcl.2003.08.004. [PMID: 14552767 ] [DOI] [PubMed] [Google Scholar]
  • 237.Visser WE, et al. Mol Cell Endocrinol. 2010;315:138–145. doi: 10.1016/j.mce.2009.08.003. [PMID: 19682536 ] [DOI] [PubMed] [Google Scholar]
  • 238.Weinman SA, et al. J Biol Chem. 1998;273:34691–34695. doi: 10.1074/jbc.273.52.34691. [PMID: 9856990 ] [DOI] [PubMed] [Google Scholar]
  • 239.Wu Y, et al. J Med Chem. 2013;56:5094–5114. doi: 10.1021/jm400459m. [PMID: 23678871 ] [DOI] [PubMed] [Google Scholar]
  • 240.Gunshin H, et al. Nature. 1997;388:482–488. doi: 10.1038/41343. [PMID: 9242408 ] [DOI] [PubMed] [Google Scholar]
  • 241.Delpire E, et al. Proc Natl Acad Sci USA. 2009;106:5383–5388. doi: 10.1073/pnas.0812756106. [PMID: 19279215 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Hannaert P, et al. Naunyn Schmiedebergs Arch Pharmacol. 2002;365:193–199. doi: 10.1007/s00210-001-0521-y. [PMID: 11882915 ] [DOI] [PubMed] [Google Scholar]
  • 243.Ito Y, et al. Eur J Pharmacol. 2001;426:175–178. doi: 10.1016/s0014-2999(01)01106-2. [PMID: 11527541 ] [DOI] [PubMed] [Google Scholar]
  • 244.Maciver B, et al. Am J Physiol Renal Physiol. 2008;294:F956–F964. doi: 10.1152/ajprenal.00229.2007. [PMID: 18256317 ] [DOI] [PubMed] [Google Scholar]
  • 245.Stewart G. Br J Pharmacol. 2011;164:1780–1792. doi: 10.1111/j.1476-5381.2011.01377.x. [PMID: 21449978 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Zhao D, et al. Biochim Biophys Acta. 2007;1768:1815–1821. doi: 10.1016/j.bbamem.2007.04.010. [PMID: 17506977 ] [DOI] [PubMed] [Google Scholar]
  • 247.Bhardwaj RK, et al. Eur J Pharm Sci. 2006;27:533–542. doi: 10.1016/j.ejps.2005.09.014. [PMID: 16289537 ] [DOI] [PubMed] [Google Scholar]
  • 248.Biegel A, et al. Amino Acids. 2006;31:137–156. doi: 10.1007/s00726-006-0331-0. [PMID: 16868651 ] [DOI] [PubMed] [Google Scholar]
  • 249.Blasius AL, et al. Proc Natl Acad Sci USA. 2010;107:19973–19978. doi: 10.1073/pnas.1014051107. [PMID: 21045126 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Botka CW, et al. AAPS PharmSci. 2000;2:E16–PMID. doi: 10.1208/ps020216. 11741232 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Daniel H, Kottra G. Pflugers Arch. 2004;447:610–618. doi: 10.1007/s00424-003-1101-4. [PMID: 12905028 ] [DOI] [PubMed] [Google Scholar]
  • 252.Darcel NP, et al. J Nutr. 2005;135:1491–1495. doi: 10.1093/jn/135.6.1491. [PMID: 15930458 ] [DOI] [PubMed] [Google Scholar]
  • 253.Döring F, et al. J Clin Invest. 1998;101:2761–2767. doi: 10.1172/JCI1909. [PMID: 9637710 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Ganapathy ME, et al. J Biol Chem. 1995;270:25672–25677. doi: 10.1074/jbc.270.43.25672. [PMID: 7592745 ] [DOI] [PubMed] [Google Scholar]
  • 255.Ganapathy ME, et al. Biochem Biophys Res Commun. 1998;246:470–475. doi: 10.1006/bbrc.1998.8628. [PMID: 9610386 ] [DOI] [PubMed] [Google Scholar]
  • 256.Han H, et al. Pharm Res. 1998;15:1154–1159. doi: 10.1023/a:1011919319810. [PMID: 9706043 ] [DOI] [PubMed] [Google Scholar]
  • 257.Herrera-Ruiz D, Knipp GT. J Pharm Sci. 2003;92:691–714. doi: 10.1002/jps.10303. [PMID: 12661057 ] [DOI] [PubMed] [Google Scholar]
  • 258.Knütter I, et al. Biochemistry. 2001;40:4454–4458. doi: 10.1021/bi0026371. [PMID: 11284702 ] [DOI] [PubMed] [Google Scholar]
  • 259.Lee J, et al. J Biol Chem. 2009;284:23818–23829. doi: 10.1074/jbc.M109.033670. [PMID: 19570976 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Merlin D, et al. J Clin Invest. 1998;102:2011–2018. doi: 10.1172/JCI4179. [PMID: 9835627 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Newstead S, et al. EMBO J. 2011;30:417–426. doi: 10.1038/emboj.2010.309. [PMID: 21131908 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Romano A, et al. Mol Cell Endocrinol. 2010;315:174–181. doi: 10.1016/j.mce.2009.11.002. [PMID: 19913073 ] [DOI] [PubMed] [Google Scholar]
  • 263.Rubio-Aliaga I, Daniel H. Xenobiotica. 2008;38:1022–1042. doi: 10.1080/00498250701875254. [PMID: 18668438 ] [DOI] [PubMed] [Google Scholar]
  • 264.Sakata K, et al. Biochem J. 2001;356:53–60. doi: 10.1042/0264-6021:3560053. (Pt 1):. [PMID: 11336635 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Sasawatari S, et al. Gastroenterology. 2011;140:1513–1525. doi: 10.1053/j.gastro.2011.01.041. [PMID: 21277849 ] [DOI] [PubMed] [Google Scholar]
  • 266.Sun Y, et al. Mol Pharm. 2009;6:315–325. doi: 10.1021/mp800200a. [PMID: 19115956 ] [DOI] [PubMed] [Google Scholar]
  • 267.Theis S, et al. Mol Pharmacol. 2002;61:214–221. doi: 10.1124/mol.61.1.214. [PMID: 11752223 ] [DOI] [PubMed] [Google Scholar]
  • 268.Vavricka SR, et al. Gastroenterology. 2004;127:1401–1409. doi: 10.1053/j.gastro.2004.07.024. [PMID: 15521010 ] [DOI] [PubMed] [Google Scholar]
  • 269.Watanabe K, et al. Biol Pharm Bull. 2002;25:885–890. doi: 10.1248/bpb.25.885. [PMID: 12132663 ] [DOI] [PubMed] [Google Scholar]
  • 270.Friesema EC, et al. Mol Endocrinol. 2006;20:2761–2772. doi: 10.1210/me.2005-0256. [PMID: 16887882 ] [DOI] [PubMed] [Google Scholar]
  • 271.Murakami Y, et al. Drug Metab Dispos. 2005;33:1845–1851. doi: 10.1124/dmd.105.005264. [PMID: 16174808 ] [DOI] [PubMed] [Google Scholar]
  • 272.Wang Q, et al. J Pharmacol Exp Ther. 2006;318:751–761. doi: 10.1124/jpet.106.105965. [PMID: 16707723 ] [DOI] [PubMed] [Google Scholar]
  • 273.Bellocchio EE, et al. Science. 2000;289:957–960. doi: 10.1126/science.289.5481.957. [PMID: 10938000 ] [DOI] [PubMed] [Google Scholar]
  • 274.Busch AE, et al. Proc Natl Acad Sci USA. 1996;93:5347–5351. doi: 10.1073/pnas.93.11.5347. [PMID: 8643577 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Iharada M, et al. J Biol Chem. 2010;285:26107–26113. doi: 10.1074/jbc.M110.122721. [PMID: 20566650 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Juge N, et al. Neuron. 2010;68:99–112. doi: 10.1016/j.neuron.2010.09.002. [PMID: 20920794 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Miyaji T, et al. J Neurochem. 2011;119:1–5. doi: 10.1111/j.1471-4159.2011.07388.x. [PMID: 21781115 ] [DOI] [PubMed] [Google Scholar]
  • 278.Sawada K, et al. Proc Natl Acad Sci USA. 2008;105:5683–5686. doi: 10.1073/pnas.0800141105. [PMID: 18375752 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Verheijen FW, et al. Nat Genet. 1999;23:462–465. doi: 10.1038/70585. [PMID: 10581036 ] [DOI] [PubMed] [Google Scholar]
  • 280.Bravo DT, et al. J Neurochem. 2004;91:766–768. doi: 10.1111/j.1471-4159.2004.02746.x. [PMID: 15485505 ] [DOI] [PubMed] [Google Scholar]
  • 281.Bravo DT, et al. Neurochem Int. 2005;47:243–247. doi: 10.1016/j.neuint.2005.05.002. [PMID: 15979764 ] [DOI] [PubMed] [Google Scholar]
  • 282.Efange SM, et al. Biochem Pharmacol. 1995;49:791–797. doi: 10.1016/0006-2952(94)00541-s. [PMID: 7702637 ] [DOI] [PubMed] [Google Scholar]
  • 283.Eiden LE, et al. Pflugers Arch. 2004;447:636–640. doi: 10.1007/s00424-003-1100-5. [PMID: 12827358 ] [DOI] [PubMed] [Google Scholar]
  • 284.Eiden LE, Weihe E. Ann N Y Acad Sci. 2011;1216:86–98. doi: 10.1111/j.1749-6632.2010.05906.x. [PMID: 21272013 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Erickson JD, Eiden LE. J Neurochem. 1993;61:2314–2317. doi: 10.1111/j.1471-4159.1993.tb07476.x. [PMID: 8245983 ] [DOI] [PubMed] [Google Scholar]
  • 286.Erickson JD, et al. Proc Natl Acad Sci USA. 1996;93:5166–5171. doi: 10.1073/pnas.93.10.5166. [PMID: 8643547 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Erickson JD, et al. J Biol Chem. 1994;269:21929–21932. [PMID: 8071310 ] [PubMed] [Google Scholar]
  • 288.Khare P, et al. Biochemistry. 2010;49:3049–3059. doi: 10.1021/bi901953j. [PMID: 20225888 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Kung MP, et al. Synapse. 1994;18:225–232. doi: 10.1002/syn.890180308. [PMID: 7855735 ] [DOI] [PubMed] [Google Scholar]
  • 290.Schirmer SU, et al. Reproduction. 2011;142:157–166. doi: 10.1530/REP-10-0302. [PMID: 21482687 ] [DOI] [PubMed] [Google Scholar]
  • 291.Varoqui H, Erickson JD. J Biol Chem. 1996;271:27229–27232. doi: 10.1074/jbc.271.44.27229. [PMID: 8910293 ] [DOI] [PubMed] [Google Scholar]
  • 292.Zhu L, et al. Bioorg Med Chem Lett. 2009;19:5026–5028. doi: 10.1016/j.bmcl.2009.07.048. [PMID: 19632829 ] [DOI] [PubMed] [Google Scholar]
  • 293.Assaraf YG, et al. J Biol Chem. 1998;273:8106–8111. doi: 10.1074/jbc.273.14.8106. [PMID: 9525913 ] [DOI] [PubMed] [Google Scholar]
  • 294.Diaz GA, et al. Nat Genet. 1999;22:309–312. doi: 10.1038/10385. [PMID: 10391223 ] [DOI] [PubMed] [Google Scholar]
  • 295.Dutta B, et al. J Biol Chem. 1999;274:31925–31929. doi: 10.1074/jbc.274.45.31925. [PMID: 10542220 ] [DOI] [PubMed] [Google Scholar]
  • 296.Prasad PD, et al. Biochem Biophys Res Commun. 1995;206:681–687. doi: 10.1006/bbrc.1995.1096. [PMID: 7826387 ] [DOI] [PubMed] [Google Scholar]
  • 297.Rajgopal A, et al. Biochim Biophys Acta. 2001;1537:175–178. doi: 10.1016/s0925-4439(01)00073-4. [PMID: 11731220 ] [DOI] [PubMed] [Google Scholar]
  • 298.Zhao R, et al. Am J Physiol, Cell Physiol. 2002;282:C1512–C1517. doi: 10.1152/ajpcell.00547.2001. [PMID: 11997266 ] [DOI] [PubMed] [Google Scholar]
  • 299.Ravera S, et al. Am J Physiol, Cell Physiol. 2007;293:C606–C620. doi: 10.1152/ajpcell.00064.2007. [PMID: 17494632 ] [DOI] [PubMed] [Google Scholar]
  • 300.Cha SH, et al. J Biol Chem. 2000;275:4507–4512. doi: 10.1074/jbc.275.6.4507. [PMID: 10660625 ] [DOI] [PubMed] [Google Scholar]
  • 301.Enomoto A, et al. Nature. 2002;417:447–452. doi: 10.1038/nature742. [PMID: 12024214 ] [DOI] [PubMed] [Google Scholar]
  • 302.Gorboulev V, et al. DNA Cell Biol. 1997;16:871–881. doi: 10.1089/dna.1997.16.871. [PMID: 9260930 ] [DOI] [PubMed] [Google Scholar]
  • 303.Gründemann D, et al. Mol Pharmacol. 1999;56:1–10. doi: 10.1124/mol.56.1.1. [PMID: 10385678 ] [DOI] [PubMed] [Google Scholar]
  • 304.Kimura H, et al. J Pharmacol Exp Ther. 2002;301:293–298. doi: 10.1124/jpet.301.1.293. [PMID: 11907186 ] [DOI] [PubMed] [Google Scholar]
  • 305.Kusuhara H, et al. J Biol Chem. 1999;274:13675–13680. doi: 10.1074/jbc.274.19.13675. [PMID: 10224140 ] [DOI] [PubMed] [Google Scholar]
  • 306.Youngblood GL, Sweet DH. Am J Physiol Renal Physiol. 2004;287:F236–F244. doi: 10.1152/ajprenal.00012.2004. [PMID: 15068970 ] [DOI] [PubMed] [Google Scholar]
  • 307.Zhu HJ, et al. J Neurochem. 2010;114:142–149. doi: 10.1111/j.1471-4159.2010.06738.x. [PMID: 20402963 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 308.Tsukaguchi H, et al. Nature. 1999;399:70–75. doi: 10.1038/19986. [PMID: 10331392 ] [DOI] [PubMed] [Google Scholar]
  • 309.Yamamoto S, et al. J Biol Chem. 2010;285:6522–6531. doi: 10.1074/jbc.M109.032961. [PMID: 20042597 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 310.Altimimi HF, Schnetkamp PP. Channels (Austin) 2007;1:62–69. doi: 10.4161/chan.4366. [PMID: 18690016 ] [DOI] [PubMed] [Google Scholar]
  • 311.Fiermonte G, et al. J Biol Chem. 2003;278:32778–32783. doi: 10.1074/jbc.M302317200. [PMID: 12807890 ] [DOI] [PubMed] [Google Scholar]
  • 312.Fiermonte G, et al. J Biol Chem. 2009;284:18152–18159. doi: 10.1074/jbc.M109.014118. [PMID: 19429682 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Chang MH, et al. J Membr Biol. 2009;228:125–140. doi: 10.1007/s00232-009-9165-5. [PMID: 19365592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Dorwart MR, et al. J Physiol (Lond) 2007;584:333–345. doi: 10.1113/jphysiol.2007.135855. (Pt 1):. [PMID: 17673510 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Kim KH, et al. J Biol Chem. 2005;280:6463–6470. doi: 10.1074/jbc.M409162200. [PMID: 15591059 ] [DOI] [PubMed] [Google Scholar]
  • 316.Blackburn C, et al. Bioorg Med Chem Lett. 2006;16:3504–3509. doi: 10.1016/j.bmcl.2006.03.102. [PMID: 16644217 ] [DOI] [PubMed] [Google Scholar]
  • 317.Faergeman NJ, et al. J Biol Chem. 1997;272:8531–8538. doi: 10.1074/jbc.272.13.8531. [PMID: 9079682 ] [DOI] [PubMed] [Google Scholar]
  • 318.Gimeno RE, et al. J Biol Chem. 2003;278:16039–16044. doi: 10.1074/jbc.M211412200. [PMID: 12556534 ] [DOI] [PubMed] [Google Scholar]
  • 319.Lewis SE, et al. J Biol Chem. 2001;276:37042–37050. doi: 10.1074/jbc.M105556200. [PMID: 11470793 ] [DOI] [PubMed] [Google Scholar]
  • 320.Li H, et al. J Lipid Res. 2008;49:230–244. doi: 10.1194/jlr.D700015-JLR200. [PMID: 17928635 ] [DOI] [PubMed] [Google Scholar]
  • 321.Mihalik SJ, et al. J Biol Chem. 2002;277:24771–24779. doi: 10.1074/jbc.M203295200. [PMID: 11980911 ] [DOI] [PubMed] [Google Scholar]
  • 322.Milger K, et al. J Cell Sci. 2006;119:4678–4688. doi: 10.1242/jcs.03280. (Pt 22):. [PMID: 17062637 ] [DOI] [PubMed] [Google Scholar]
  • 323.Ordovás L, et al. Cytogenet Genome Res. 2006;115:115–122. doi: 10.1159/000095230. [PMID: 17065791 ] [DOI] [PubMed] [Google Scholar]
  • 324.Sandoval A, et al. Biochem Pharmacol. 2010;79:990–999. doi: 10.1016/j.bcp.2009.11.008. [PMID: 19913517 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 325.Schaffer JE, Lodish HF. Cell. 1994;79:427–436. doi: 10.1016/0092-8674(94)90252-6. [PMID: 7954810 ] [DOI] [PubMed] [Google Scholar]
  • 326.Stahl A, et al. Mol Cell. 1999;4:299–308. doi: 10.1016/s1097-2765(00)80332-9. [PMID: 10518211 ] [DOI] [PubMed] [Google Scholar]
  • 327.Zhou W, et al. J Biomol Screen. 2010;15:488–497. doi: 10.1177/1087057110369700. [PMID: 20448275 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 328.Baldwin SA, et al. J Biol Chem. 2005;280:15880–15887. doi: 10.1074/jbc.M414337200. [PMID: 15701636 ] [DOI] [PubMed] [Google Scholar]
  • 329.Engel K, Wang J. Mol Pharmacol. 2005;68:1397–1407. doi: 10.1124/mol.105.016832. [PMID: 16099839 ] [DOI] [PubMed] [Google Scholar]
  • 330.Hammond JR, Archer RG. J Pharmacol Exp Ther. 2004;308:1083–1093. doi: 10.1124/jpet.103.060434. [PMID: 14634039 ] [DOI] [PubMed] [Google Scholar]
  • 331.Hsu CL, et al. Science. 2012;335:89–92. doi: 10.1126/science.1213682. [PMID: 22174130 ] [DOI] [PubMed] [Google Scholar]
  • 332.Kang N, et al. J Biol Chem. 2010;285:28343–28352. doi: 10.1074/jbc.M110.109199. [PMID: 20595384 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 333.Sundaram M, et al. J Biol Chem. 1998;273:21519–21525. doi: 10.1074/jbc.273.34.21519. [PMID: 9705281 ] [DOI] [PubMed] [Google Scholar]
  • 334.Warraich S, et al. J Bone Miner Res. 2013;28:1135–1149. doi: 10.1002/jbmr.1826. [PMID: 23184610 ] [DOI] [PubMed] [Google Scholar]
  • 335.Yao SY, et al. J Biol Chem. 2011;286:32552–32562. doi: 10.1074/jbc.M111.236117. [PMID: 21795683 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 336.Salazar G, et al. PLoS ONE. 2009;4:e5896–ePMID. doi: 10.1371/journal.pone.0005896. 19521526 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.Suzuki T, et al. J Biol Chem. 2005;280:30956–30962. doi: 10.1074/jbc.M506902200. [PMID: 15994300 ] [DOI] [PubMed] [Google Scholar]
  • 338.Blair BG, et al. Clin Cancer Res. 2009;15:4312–4321. doi: 10.1158/1078-0432.CCR-09-0311. [PMID: 19509135 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Ishida S, et al. Proc Natl Acad Sci USA. 2002;99:14298–14302. doi: 10.1073/pnas.162491399. [PMID: 12370430 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 340.Lee J, et al. J Biol Chem. 2002;277:4380–4387. doi: 10.1074/jbc.M104728200. [PMID: 11734551 ] [DOI] [PubMed] [Google Scholar]
  • 341.Rees EM, et al. J Biol Chem. 2004;279:54221–54229. doi: 10.1074/jbc.M411669200. [PMID: 15494390 ] [DOI] [PubMed] [Google Scholar]
  • 342.Fattorini G, et al. J Neurochem. 2009;110:1538–1546. doi: 10.1111/j.1471-4159.2009.06251.x. [PMID: 19627441 ] [DOI] [PubMed] [Google Scholar]
  • 343.Gasnier B. Biochimie. 2000;82:327–337. doi: 10.1016/s0300-9084(00)00221-2. [PMID: 10865121 ] [DOI] [PubMed] [Google Scholar]
  • 344.Gasnier B. Pflugers Arch. 2004;447:756–759. doi: 10.1007/s00424-003-1091-2. [PMID: 12750892 ] [DOI] [PubMed] [Google Scholar]
  • 345.Juge N, et al. J Biol Chem. 2009;284:35073–35078. doi: 10.1074/jbc.M109.062414. [PMID: 19843525 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 346.Martens H, et al. J Neurosci. 2008;28:13125–13131. doi: 10.1523/JNEUROSCI.3887-08.2008. [PMID: 19052203 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 347.McIntire SL, et al. Nature. 1997;389:870–876. doi: 10.1038/39908. [PMID: 9349821 ] [DOI] [PubMed] [Google Scholar]
  • 348.Saito K, et al. Mol Brain. 2010;3:40. doi: 10.1186/1756-6606-3-40. [PMID: 21190592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 349.Schiöth HB, et al. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID: 23506890 ] [DOI] [PubMed] [Google Scholar]
  • 350.Wojcik SM, et al. Neuron. 2006;50:575–587. doi: 10.1016/j.neuron.2006.04.016. [PMID: 16701208 ] [DOI] [PubMed] [Google Scholar]
  • 351.Zander JF, et al. J Neurosci. 2010;30:7634–7645. doi: 10.1523/JNEUROSCI.0141-10.2010. [PMID: 20519538 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 352.Jonas MC, et al. J Cell Sci. 2010;123:3378–3388. doi: 10.1242/jcs.068841. (Pt 19):. [PMID: 20826464 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Kanamori A, et al. Proc Natl Acad Sci USA. 1997;94:2897–2902. doi: 10.1073/pnas.94.7.2897. [PMID: 9096318 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Lin P, et al. Am J Hum Genet. 2008;83:752–759. doi: 10.1016/j.ajhg.2008.11.003. [PMID: 19061983 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 355.Schlipf NA, et al. Eur J Hum Genet. 2010;18:1065–1067. doi: 10.1038/ejhg.2010.68. [PMID: 20461110 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 356.Andrini O, et al. Channels (Austin) 2008;2:346–357. doi: 10.4161/chan.2.5.6900. [PMID: 18989094 ] [DOI] [PubMed] [Google Scholar]
  • 357.Forster IC, et al. Am J Physiol. 1999;276(4):F644–F649. doi: 10.1152/ajprenal.1999.276.4.F644. Pt 2):. [PMID: 10198426 ] [DOI] [PubMed] [Google Scholar]
  • 358.Ashikov A, et al. J Biol Chem. 2005;280:27230–27235. doi: 10.1074/jbc.M504783200. [PMID: 15911612 ] [DOI] [PubMed] [Google Scholar]
  • 359.Ishida N, et al. J Biochem. 1998;124:171–178. doi: 10.1093/oxfordjournals.jbchem.a022076. [PMID: 9644260 ] [DOI] [PubMed] [Google Scholar]
  • 360.Ishida N, et al. Genomics. 2005;85:106–116. doi: 10.1016/j.ygeno.2004.09.010. [PMID: 15607426 ] [DOI] [PubMed] [Google Scholar]
  • 361.Ishida N, et al. J Biochem. 1996;120:1074–1078. doi: 10.1093/oxfordjournals.jbchem.a021523. [PMID: 9010752 ] [DOI] [PubMed] [Google Scholar]
  • 362.Ishida N, et al. J Biochem. 1999;126:68–77. doi: 10.1093/oxfordjournals.jbchem.a022437. [PMID: 10393322 ] [DOI] [PubMed] [Google Scholar]
  • 363.Kamiyama S, et al. J Biol Chem. 2006;281:10945–10953. doi: 10.1074/jbc.M508991200. [PMID: 16492677 ] [DOI] [PubMed] [Google Scholar]
  • 364.Kamiyama S, et al. J Biol Chem. 2003;278:25958–25963. doi: 10.1074/jbc.M302439200. [PMID: 12716889 ] [DOI] [PubMed] [Google Scholar]
  • 365.Lühn K, et al. Nat Genet. 2001;28:69–72. doi: 10.1038/ng0501-69. [PMID: 11326279 ] [DOI] [PubMed] [Google Scholar]
  • 366.Miura N, et al. J Biochem. 1996;120:236–241. doi: 10.1093/oxfordjournals.jbchem.a021404. [PMID: 8889805 ] [DOI] [PubMed] [Google Scholar]
  • 367.Muraoka M, et al. FEBS Lett. 2001;495:87–93. doi: 10.1016/s0014-5793(01)02358-4. [PMID: 11322953 ] [DOI] [PubMed] [Google Scholar]
  • 368.Abbot EL, et al. Br J Pharmacol. 2006;147:298–306. doi: 10.1038/sj.bjp.0706557. [PMID: 16331283 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 369.Agulhon C, et al. J Comp Neurol. 2003;462:71–89. doi: 10.1002/cne.10712. [PMID: 12761825 ] [DOI] [PubMed] [Google Scholar]
  • 370.Boll M, et al. J Biol Chem. 2002;277:22966–22973. doi: 10.1074/jbc.M200374200. [PMID: 11959859 ] [DOI] [PubMed] [Google Scholar]
  • 371.Bröer S. Physiology (Bethesda) 2008;23:95–103. doi: 10.1152/physiol.00045.2007. [PMID: 18400692 ] [DOI] [PubMed] [Google Scholar]
  • 372.Bröer S, et al. J Clin Invest. 2008;118:3881–3892. doi: 10.1172/JCI36625. [PMID: 19033659 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 373.Chen Z, et al. J Physiol (Lond) 2003;546:349–361. doi: 10.1113/jphysiol.2002.026500. (Pt 2):. [PMID: 12527723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 374.Chen Z, et al. Biochem Biophys Res Commun. 2003;304:747–754. doi: 10.1016/s0006-291x(03)00648-x. [PMID: 12727219 ] [DOI] [PubMed] [Google Scholar]
  • 375.Edwards N, et al. Biochim Biophys Acta. 2011;1808:260–270. doi: 10.1016/j.bbamem.2010.07.032. [PMID: 20691150 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 376.Foltz M, et al. Biochem J. 2005;386:607–616. doi: 10.1042/BJ20041519. (Pt 3):. [PMID: 15504109 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 377.Kennedy DJ, et al. Br J Pharmacol. 2005;144:28–41. doi: 10.1038/sj.bjp.0706029. [PMID: 15644866 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 378.Larsen M, et al. Br J Pharmacol. 2009;157:1380–1389. doi: 10.1111/j.1476-5381.2009.00253.x. [PMID: 19594759 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 379.Larsen MH, et al. Eur J Pharmacol. 2008;578:114–122. doi: 10.1016/j.ejphar.2007.08.050. [PMID: 17950272 ] [DOI] [PubMed] [Google Scholar]
  • 380.Metzner L, et al. FASEB J. 2005;19:1468–1473. doi: 10.1096/fj.05-3683com. [PMID: 16126914 ] [DOI] [PubMed] [Google Scholar]
  • 381.Pillai SM, Meredith D. J Biol Chem. 2011;286:2455–2460. doi: 10.1074/jbc.M110.172403. [PMID: 21097500 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 382.Sagné C, et al. Proc Natl Acad Sci USA. 2001;98:7206–7211. doi: 10.1073/pnas.121183498. [PMID: 11390972 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 383.Thwaites DT, Anderson CM. Br J Pharmacol. 2011;164:1802–1816. doi: 10.1111/j.1476-5381.2011.01438.x. [PMID: 21501141 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 384.Almqvist J, et al. Biochemistry. 2004;43:9289–9297. doi: 10.1021/bi049334h. [PMID: 15260472 ] [DOI] [PubMed] [Google Scholar]
  • 385.Chen SY, et al. FASEB J. 2008;22:2206–2213. doi: 10.1096/fj.07-104851. [PMID: 18337460 ] [DOI] [PubMed] [Google Scholar]
  • 386.Pan CJ, et al. PLoS ONE. 2011;6:e23157. doi: 10.1371/journal.pone.0023157. [PMID: 21949678 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 387.Albers A, et al. Pflugers Arch. 2001;443:92–101. doi: 10.1007/s004240100663. [PMID: 11692272 ] [DOI] [PubMed] [Google Scholar]
  • 388.Bröer A, et al. J Physiol (Lond) 2002;539:3–14. (Pt 1):. [PMID: 11850497 ] [Google Scholar]
  • 389.Fei YJ, et al. J Biol Chem. 2000;275:23707–23717. doi: 10.1074/jbc.M002282200. [PMID: 10823827 ] [DOI] [PubMed] [Google Scholar]
  • 390.Hatanaka T, et al. Biochim Biophys Acta. 2001;1510:10–17. doi: 10.1016/s0005-2736(00)00390-4. [PMID: 11342143 ] [DOI] [PubMed] [Google Scholar]
  • 391.Hatanaka T, et al. Biochim Biophys Acta. 2000;1467:1–6. doi: 10.1016/s0005-2736(00)00252-2. [PMID: 10930503 ] [DOI] [PubMed] [Google Scholar]
  • 392.Hägglund MG, et al. J Biol Chem. 2011;286:20500–20511. doi: 10.1074/jbc.M110.162404. [PMID: 21511949 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 393.Nakanishi T, et al. Biochem Biophys Res Commun. 2001;281:1343–1348. doi: 10.1006/bbrc.2001.4504. [PMID: 11243884 ] [DOI] [PubMed] [Google Scholar]
  • 394.Schiöth HB, et al. Mol Aspects Med. 2013;34:571–585. doi: 10.1016/j.mam.2012.07.012. [PMID: 23506890 ] [DOI] [PubMed] [Google Scholar]
  • 395.Dalton TP, et al. Proc Natl Acad Sci USA. 2005;102:3401–3406. doi: 10.1073/pnas.0406085102. [PMID: 15722412 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 396.Girijashanker K, et al. Mol Pharmacol. 2008;73:1413–1423. doi: 10.1124/mol.107.043588. [PMID: 18270315 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 397.Liu Z, et al. Biochem Biophys Res Commun. 2008;365:814–820. doi: 10.1016/j.bbrc.2007.11.067. [PMID: 18037372 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 398.Liuzzi JP, et al. Proc Natl Acad Sci USA. 2006;103:13612–13617. doi: 10.1073/pnas.0606424103. [PMID: 16950869 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 399.Aguirre P, et al. BMC Neurosci. 2005;6:3. doi: 10.1186/1471-2202-6-3. [PMID: 15667655 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 400.De Domenico I, et al. Blood. 2007;109:2205–2209. doi: 10.1182/blood-2006-06-032516. [PMID: 17077321 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 401.De Domenico I, et al. Proc Natl Acad Sci USA. 2005;102:8955–8960. doi: 10.1073/pnas.0503804102. [PMID: 15956209 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 402.Donovan A, et al. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. [PMID: 16054062 ] [DOI] [PubMed] [Google Scholar]
  • 403.Rice AE, et al. J Mol Biol. 2009;386:717–732. doi: 10.1016/j.jmb.2008.12.063. [PMID: 19150361 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 404.Goytain A, Quamme GA. Physiol Genomics. 2005;21:337–342. doi: 10.1152/physiolgenomics.00261.2004. [PMID: 15713785 ] [DOI] [PubMed] [Google Scholar]
  • 405.Goytain A, Quamme GA. Biochem Biophys Res Commun. 2005;330:701–705. doi: 10.1016/j.bbrc.2005.03.037. [PMID: 15809054 ] [DOI] [PubMed] [Google Scholar]
  • 406.Kolisek M, et al. Am J Physiol, Cell Physiol. 2012;302:C318–C326. doi: 10.1152/ajpcell.00289.2011. [PMID: 22031603 ] [DOI] [PubMed] [Google Scholar]
  • 407.Sahni J, Scharenberg AM. Mol Aspects Med. 2013;34:620–628. doi: 10.1016/j.mam.2012.05.012. [PMID: 23506895 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 408.Endeward V, et al. FASEB J. 2008;22:64–73. doi: 10.1096/fj.07-9097com. [PMID: 17712059 ] [DOI] [PubMed] [Google Scholar]
  • 409.Ripoche P, et al. Proc Natl Acad Sci USA. 2004;101:17222–17227. doi: 10.1073/pnas.0403704101. [PMID: 15572441 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 410.Westhoff CM, et al. J Biol Chem. 2002;277:12499–12502. doi: 10.1074/jbc.C200060200. [PMID: 11861637 ] [DOI] [PubMed] [Google Scholar]
  • 411.Zidi-Yahiaoui N, et al. Am J Physiol, Cell Physiol. 2009;297:C537–C547. doi: 10.1152/ajpcell.00137.2009. [PMID: 19553567 ] [DOI] [PubMed] [Google Scholar]
  • 412.Babu E, et al. J Biol Chem. 2003;278:43838–43845. doi: 10.1074/jbc.M305221200. [PMID: 12930836 ] [DOI] [PubMed] [Google Scholar]
  • 413.Bodoy S, et al. J Biol Chem. 2005;280:12002–12011. doi: 10.1074/jbc.M408638200. [PMID: 15659399 ] [DOI] [PubMed] [Google Scholar]
  • 414.Wallgard E, et al. Arterioscler Thromb Vasc Biol. 2008;28:1469–1476. doi: 10.1161/ATVBAHA.108.165738. [PMID: 18483404 ] [DOI] [PubMed] [Google Scholar]
  • 415.Greinacher A, et al. Nat Med. 2010;16:45–48. doi: 10.1038/nm.2070. [PMID: 20037594 ] [DOI] [PubMed] [Google Scholar]
  • 416.Inazu M, et al. J Neurochem. 2005;94:1427–1437. doi: 10.1111/j.1471-4159.2005.03299.x. [PMID: 16000150 ] [DOI] [PubMed] [Google Scholar]
  • 417.Kommareddi PK, et al. Protein J. 2010;29:417–426. doi: 10.1007/s10930-010-9268-y. [PMID: 20665236 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 418.Kouji H, et al. Arch Biochem Biophys. 2009;483:90–98. doi: 10.1016/j.abb.2008.12.008. [PMID: 19135976 ] [DOI] [PubMed] [Google Scholar]
  • 419.Michel V, Bakovic M. FASEB J. 2009;23:2749–2758. doi: 10.1096/fj.08-121491. [PMID: 19357133 ] [DOI] [PubMed] [Google Scholar]
  • 420.Michel V, et al. Exp Biol Med (Maywood) 2006;231:490–504. doi: 10.1177/153537020623100503. [PMID: 16636297 ] [DOI] [PubMed] [Google Scholar]
  • 421.Nair TS, et al. J Neurosci. 2004;24:1772–1779. doi: 10.1523/JNEUROSCI.5063-03.2004. [PMID: 14973250 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 422.Nakamura T, et al. Biol Pharm Bull. 2010;33:691–696. doi: 10.1248/bpb.33.691. [PMID: 20410607 ] [DOI] [PubMed] [Google Scholar]
  • 423.Traiffort E, et al. J Neurochem. 2005;92:1116–1125. doi: 10.1111/j.1471-4159.2004.02962.x. [PMID: 15715662 ] [DOI] [PubMed] [Google Scholar]
  • 424.Uchida Y, et al. J Pharmacol Sci. 2009;109:102–109. doi: 10.1254/jphs.08291fp. [PMID: 19122366 ] [DOI] [PubMed] [Google Scholar]
  • 425.Wille S, et al. J Immunol. 2001;167:5795–5804. doi: 10.4049/jimmunol.167.10.5795. [PMID: 11698453 ] [DOI] [PubMed] [Google Scholar]
  • 426.Yabuki M, et al. Arch Biochem Biophys. 2009;485:88–96. doi: 10.1016/j.abb.2009.02.007. [PMID: 19236841 ] [DOI] [PubMed] [Google Scholar]
  • 427.Yamada T, et al. Neurochem Int. 2011;58:354–365. doi: 10.1016/j.neuint.2010.12.011. [PMID: 21185344 ] [DOI] [PubMed] [Google Scholar]
  • 428.Graf J, et al. Hum Mutat. 2005;25:278–284. doi: 10.1002/humu.20143. [PMID: 15714523 ] [DOI] [PubMed] [Google Scholar]
  • 429.Newton JM, et al. Am J Hum Genet. 2001;69:981–988. doi: 10.1086/324340. [PMID: 11574907 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 430.Shimokawa N, et al. J Neurosci. 2002;22:9160–9165. doi: 10.1523/JNEUROSCI.22-21-09160.2002. [PMID: 12417639 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 431.Nakai Y, et al. J Pharmacol Exp Ther. 2007;322:469–476. doi: 10.1124/jpet.107.122606. [PMID: 17475902 ] [DOI] [PubMed] [Google Scholar]
  • 432.Qiu A, et al. Cell. 2006;127:917–928. doi: 10.1016/j.cell.2006.09.041. [PMID: 17129779 ] [DOI] [PubMed] [Google Scholar]
  • 433.Salojin KV, et al. Blood. 2011;117:4895–4904. doi: 10.1182/blood-2010-04-279653. [PMID: 21346251 ] [DOI] [PubMed] [Google Scholar]
  • 434.Chen Y, et al. J Pharmacol Exp Ther. 2007;322:695–700. doi: 10.1124/jpet.107.123554. [PMID: 17495125 ] [DOI] [PubMed] [Google Scholar]
  • 435.Ito S, et al. J Pharmacol Exp Ther. 2010;333:341–350. doi: 10.1124/jpet.109.163642. [PMID: 20065018 ] [DOI] [PubMed] [Google Scholar]
  • 436.Masuda S, et al. J Am Soc Nephrol. 2006;17:2127–2135. doi: 10.1681/ASN.2006030205. [PMID: 16807400 ] [DOI] [PubMed] [Google Scholar]
  • 437.Ohta KY, et al. Drug Metab Dispos. 2006;34:1868–1874. doi: 10.1124/dmd.106.010876. [PMID: 16928787 ] [DOI] [PubMed] [Google Scholar]
  • 438.Otsuka M, et al. Proc Natl Acad Sci USA. 2005;102:17923–17928. doi: 10.1073/pnas.0506483102. [PMID: 16330770 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 439.Tanihara Y, et al. Biochem Pharmacol. 2007;74:359–371. doi: 10.1016/j.bcp.2007.04.010. [PMID: 17509534 ] [DOI] [PubMed] [Google Scholar]
  • 440.Terada T, et al. Pharm Res. 2006;23:1696–1701. doi: 10.1007/s11095-006-9016-3. [PMID: 16850272 ] [DOI] [PubMed] [Google Scholar]
  • 441.Tsuda M, et al. J Pharmacol Exp Ther. 2009;329:185–191. doi: 10.1124/jpet.108.147918. [PMID: 19164462 ] [DOI] [PubMed] [Google Scholar]
  • 442.Yasujima T, et al. Drug Metab Dispos. 2010;38:715–721. doi: 10.1124/dmd.109.030221. [PMID: 20047987 ] [DOI] [PubMed] [Google Scholar]
  • 443.Zhang X, Wright SH. Am J Physiol Renal Physiol. 2009;297:F263–F271. doi: 10.1152/ajprenal.00123.2009. [PMID: 19515813 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 444.O'Callaghan KM, et al. J Biol Chem. 2010;285:381–391. doi: 10.1074/jbc.M109.063248. [PMID: 19875448 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 445.Rajagopal A, et al. Nature. 2008;453:1127–1131. doi: 10.1038/nature06934. [PMID: 18418376 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 446.White C, et al. Cell Metab. 2013;17:261–270. doi: 10.1016/j.cmet.2013.01.005. [PMID: 23395172 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 447.Bodmer D, et al. Hum Mol Genet. 2002;11:641–649. doi: 10.1093/hmg/11.6.641. [PMID: 11912179 ] [DOI] [PubMed] [Google Scholar]
  • 448.Chiabrando D, et al. J Clin Invest. 2012;122:4569–4579. doi: 10.1172/JCI62422. [PMID: 23187127 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 449.Duffy SP, et al. Mol Cell Biol. 2010;30:5318–5324. doi: 10.1128/MCB.00690-10. [PMID: 20823265 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 450.Lipovich L, et al. Gene. 2002;286:203–213. doi: 10.1016/s0378-1119(02)00457-2. [PMID: 11943475 ] [DOI] [PubMed] [Google Scholar]
  • 451.Meyer E, et al. Am J Hum Genet. 2010;86:471–478. doi: 10.1016/j.ajhg.2010.02.004. [PMID: 20206334 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 452.Quigley JG, et al. Cell. 2004;118:757–766. doi: 10.1016/j.cell.2004.08.014. [PMID: 15369674 ] [DOI] [PubMed] [Google Scholar]
  • 453.Rajadhyaksha AM, et al. Am J Hum Genet. 2010;87:643–654. doi: 10.1016/j.ajhg.2010.10.013. [PMID: 21070897 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 454.Rey MA, et al. Haematologica. 2008;93:1617–1626. doi: 10.3324/haematol.13359. [PMID: 18815190 ] [DOI] [PubMed] [Google Scholar]
  • 455.Tailor CS, et al. J Virol. 1999;73:6500–6505. doi: 10.1128/jvi.73.8.6500-6505.1999. [PMID: 10400745 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 456.Chen LQ, et al. Nature. 2010;468:527–532. doi: 10.1038/nature09606. [PMID: 21107422 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 457.Tagoh H, et al. Biochem Biophys Res Commun. 1996;221:744–749. doi: 10.1006/bbrc.1996.0667. [PMID: 8630032 ] [DOI] [PubMed] [Google Scholar]
  • 458.Ballatori N, et al. Hepatology. 2005;42:1270–1279. doi: 10.1002/hep.20961. [PMID: 16317684 ] [DOI] [PubMed] [Google Scholar]
  • 459.Christian WV, et al. J Biol Chem. 2012;287:21233–21243. doi: 10.1074/jbc.M112.352245. [PMID: 22535958 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 460.Dawson PA, et al. J Biol Chem. 2005;280:6960–6968. doi: 10.1074/jbc.M412752200. [PMID: 15563450 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 461.Fang F, et al. J Neurochem. 2010;115:220–233. doi: 10.1111/j.1471-4159.2010.06920.x. [PMID: 20649839 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 462.Li N, et al. Biochem J. 2007;407:363–372. doi: 10.1042/BJ20070716. [PMID: 17650074 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 463.Yao Y, et al. J Nutr. 2010;140:1220–1226. doi: 10.3945/jn.110.122911. [PMID: 20463145 ] [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES