Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Jul;68(7):1552–1554. doi: 10.1073/pnas.68.7.1552

Microbial Metabolism of the Isoprenoid Alkane Pristane

E J McKenna 1,*, R E Kallio 1,*
PMCID: PMC389238  PMID: 4327007

Abstract

The “inert” hydrocarbon pristane (2,6,10,14-tetramethylpentadecane) can be utilized as the sole source of carbon and energy for growth of a coryneform soil isolate. Identification of the metabolites 4,8,12-trimethyltridecanoic acid and α-methylglutaric acid indicates that two pathways of fatty acid metabolism operate in this bacterial strain.

The widespread use of pristane as a biological marker appears to be predicated on its structural similarity to phytol and its apparent stability, which may be only a reflection of the inability of microorganisms to carry out its anaerobic destruction.

Keywords: α-methylglutarate; 4,8,12-trimethyltridecanoate; fatty acid metabolism

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackman R. G., Hooper S. N. Examination of isoprenoid fatty acids as distinguishing characteristics of specific marine oils with particular reference to whale oils. Comp Biochem Physiol. 1968 Feb;24(2):549–565. doi: 10.1016/0010-406x(68)91008-6. [DOI] [PubMed] [Google Scholar]
  2. Avigan J., Milne G. W., Highet R. J. The occurrence of pristane and phytane in man and animals. Biochim Biophys Acta. 1967 Aug 8;144(1):127–131. doi: 10.1016/0005-2760(67)90084-7. [DOI] [PubMed] [Google Scholar]
  3. Blumer M., Cooper W. J. Isoprenoid acids in recent sediments. Science. 1967 Dec 15;158(3807):1463–1464. doi: 10.1126/science.158.3807.1463. [DOI] [PubMed] [Google Scholar]
  4. Blumer M. Hydrocarbons in digestive tract and liver of a basking shark. Science. 1967 Apr 21;156(3773):390–391. doi: 10.1126/science.156.3773.390. [DOI] [PubMed] [Google Scholar]
  5. Blumer M., Robertson J. C., Gordon J. E., Sass J. Phytol-derived C19 di- and triolefinic hydrocarbons in marine zooplankton and fishes. Biochemistry. 1969 Oct;8(10):4067–4074. doi: 10.1021/bi00838a025. [DOI] [PubMed] [Google Scholar]
  6. Blumer M., Snyder W. D. Isoprenoid Hydrocarbons in Recent Sediments: Presence of Pristane and Probable Absence of Phytane. Science. 1965 Dec 17;150(3703):1588–1589. doi: 10.1126/science.150.3703.1588. [DOI] [PubMed] [Google Scholar]
  7. Burlingame A. L., Simoneit B. R. Isoprenoid Fatty acids isolated from the kerogen matrix of the green river formation (eocene). Science. 1968 May 3;160(3827):531–533. doi: 10.1126/science.160.3827.531. [DOI] [PubMed] [Google Scholar]
  8. Hansen R. P. 4,8,12-Trimethyltridecanoic acid: its isolation and identification from sheep perinephric fat. Biochim Biophys Acta. 1968 Dec 18;164(3):550–557. doi: 10.1016/0005-2760(68)90184-7. [DOI] [PubMed] [Google Scholar]
  9. Hansen R. P., Shorland F. B., Prior I. A. The occurrence of 4,8,12-trimethyltridecanoic acid in the tissues of rats fed high levels of phytanic acid. Biochim Biophys Acta. 1968 May 1;152(3):642–644. doi: 10.1016/0005-2760(68)90108-2. [DOI] [PubMed] [Google Scholar]
  10. KESTER A. S., FOSTER J. W. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA. J Bacteriol. 1963 Apr;85:859–869. doi: 10.1128/jb.85.4.859-869.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maclean I., Eglinton G., Douraghi-Zadeh K., Ackman R. G., Hooper S. N. Correlation of stereoisomerism in present day and geologically ancient isoprenoid fatty acids. Nature. 1968 Jun 15;218(5146):1019–1024. doi: 10.1038/2181019a0. [DOI] [PubMed] [Google Scholar]
  12. Meinschein W. G., Cordes E., Shiner V. J., Jr Search for alkanes of 15 to 30 carbon atom length. Science. 1970 Jan 30;167(3918):753–754. doi: 10.1126/science.167.3918.753. [DOI] [PubMed] [Google Scholar]
  13. Mize C. E., Avigan J., Steinberg D., Pittman R. C., Fales H. M., Milne G. W. A major pathway for the mammalian oxidative degradation of phytanic acid. Biochim Biophys Acta. 1969 Jun 10;176(4):720–739. doi: 10.1016/0005-2760(69)90253-7. [DOI] [PubMed] [Google Scholar]
  14. Mize C. E., Steinberg D., Avigan J., Fales H. M. A pathway for oxidative degradation of phytanic acid in mammals. Biochem Biophys Res Commun. 1966 Nov 11;25(3):359–365. doi: 10.1016/0006-291x(66)90786-8. [DOI] [PubMed] [Google Scholar]
  15. O'Neill H. J., Gershbein L. L., Scholz R. G. Identification of pristane in human sebum. Biochem Biophys Res Commun. 1969 Jun 27;35(6):946–952. doi: 10.1016/0006-291x(69)90716-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES