Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Jul;68(7):1639–1643. doi: 10.1073/pnas.68.7.1639

Role of Exonuclease and β Protein of Phage λ in Genetic Recombination, V. Recombination of λ DNA in Vitro

Era Cassuto 1,2, Terry Lash 1,2, K S Sriprakash 1,2, Charles M Radding 1,2
PMCID: PMC389258  PMID: 4934524

Abstract

The sequential action of λ exonuclease and polynucleotide ligase upon redundant joint molecules is sufficient to produce intact polynucleotide chains and heat-stable, biologically active molecules of λ DNA, whereas the action of ligase alone is insufficient. These results (a) confirm the previously described mechanism of single-strand assimilation, including a subsidiary mechanism by which the further action of λ exonuclease is arrested when a redundant strand is completely assimilated, and (b) represent a simulation of the steps in genetic recombination that follow the formation of biparental complexes (synapsis). λ exonuclease is postulated to catalyze a concerted reaction that includes exposure of complementary sequences, formation of heteroduplex regions, and elimination of redundant branches.

Keywords: single-strand assimilation, mechanism of arrest

Full text

PDF
1639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts B. M., Frey L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 1970 Sep 26;227(5265):1313–1318. doi: 10.1038/2271313a0. [DOI] [PubMed] [Google Scholar]
  2. Boon T., Zinder N. D. A mechanism for genetic recombination generating one parent and one recombinant. Proc Natl Acad Sci U S A. 1969 Oct;64(2):573–577. doi: 10.1073/pnas.64.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carter D. M., Radding C. M. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem. 1971 Apr 25;246(8):2502–2512. [PubMed] [Google Scholar]
  4. FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
  5. Iyer V. N., Rupp W. D. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim Biophys Acta. 1971 Jan 1;228(1):117–126. doi: 10.1016/0005-2787(71)90551-x. [DOI] [PubMed] [Google Scholar]
  6. Lee C. S., Davis R. W., Davidson N. A physical study by electron microscopy of the terminally reptitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J Mol Biol. 1970 Feb 28;48(1):1–22. doi: 10.1016/0022-2836(70)90215-9. [DOI] [PubMed] [Google Scholar]
  7. Little J. W. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem. 1967 Feb 25;242(4):679–686. [PubMed] [Google Scholar]
  8. Mackinlay A. G., Kaiser A. D. DNA replication in head mutants of bacteriophage lambda. J Mol Biol. 1969 Feb 14;39(3):679–683. doi: 10.1016/0022-2836(69)90155-7. [DOI] [PubMed] [Google Scholar]
  9. Masamune Y., Fleischman R. A., Richardson C. C. Enzymatic removal and replacement of nucleotides at single strand breaks in deoxyribonucleic acid. J Biol Chem. 1971 Apr 25;246(8):2680–2691. [PubMed] [Google Scholar]
  10. Radding C. M., Carter D. M. The role of exonuclease and beta protein of phage lambda in genetic recombination. 3. Binding to deoxyribonucleic acid. J Biol Chem. 1971 Apr 25;246(8):2513–2518. [PubMed] [Google Scholar]
  11. Sedat J. W., Kelly R. B., Sinsheimer R. L. Fractionation of nucleic acid on benzoylated-naphthoylated DEAE cellulose. J Mol Biol. 1967 Jun 28;26(3):537–540. doi: 10.1016/0022-2836(67)90321-x. [DOI] [PubMed] [Google Scholar]
  12. Weiss B., Thompson A., Richardson C. C. Ezymatic breakage and joining of deoxyribonucleic acid. VII. Properties of the enzyme-adenylate intermediate in the polynucleotide ligase reaction. J Biol Chem. 1968 Sep 10;243(17):4556–4563. [PubMed] [Google Scholar]
  13. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. I. Infectivity in a spheroplast assay. J Mol Biol. 1967 Nov 28;30(1):147–164. doi: 10.1016/0022-2836(67)90250-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES