Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Aug;68(8):1853–1857. doi: 10.1073/pnas.68.8.1853

Structure of Concanavalin A at 4 Å Resolution

Florante A Quiocho *, George N Reeke Jr , Joseph W Becker , William N Lipscomb *, Gerald M Edelman
PMCID: PMC389307  PMID: 5288772

Abstract

Concanavalin A, a phytohemagglutinin isolated from the jack bean, crystallizes at pH 6.8 in the orthorhombic space group 1222 with a = 89.9, b = 87.2, and c = 63.1 Å. We have analyzed x-ray diffraction intensity data to 4 Å resolution on native concanavalin A and five heavy-metal derivatives: lead, mersalyl, chloroplatinate, uranyl, and o-mercuri-p-nitrophenol. Heavy-atom positions, occupancies, and isotropic thermal parameters have been refined by least-squares methods.

The electron density maps clearly show the molecular shape and the packing of the concanavalin A molecules. The asymmetric unit (mol wt 27,000) forms an elliptical dome or “gumdrop” with a base of approximately 46 × 26 Å and a height of 42 Å. The subunits are paired across 2-fold axes parallel to the c-axis to form dimers. The dimers are in turn paired across points of D2 symmetry to form tetramers of roughly tetrahedral shape. Each unit has a depression located on the surface which could be the site of saccharide binding. In many regions we have been able to trace the course of the polypeptide chain.

Keywords: x-ray diffraction, heavy-atom derivatives, lectins

Full text

PDF
1853

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD W. C. The lectins: their present status. Vox Sang. 1963 Jan-Feb;8:1–32. doi: 10.1111/j.1423-0410.1963.tb04146.x. [DOI] [PubMed] [Google Scholar]
  2. Burger M. M., Noonan K. D. Restoration of normal growth by covering of agglutinin sites on tumour cell surface. Nature. 1970 Nov 7;228(5271):512–515. doi: 10.1038/228512a0. [DOI] [PubMed] [Google Scholar]
  3. GOLDSTEIN I. J., HOLLERMAN C. E., MERRICK J. M. PROTEIN-CARBOHYDRATE INTERACTION. I. THE INTERACTION OF POLYSACCHARIDES WITH CONCANAVALIN A. Biochim Biophys Acta. 1965 Jan 4;97:68–76. doi: 10.1016/0304-4165(65)90270-9. [DOI] [PubMed] [Google Scholar]
  4. GOLDSTEIN I. J., HOLLERMAN C. E., SMITH E. E. PROTEIN-CARBOHYDRATE INTERACTION. II. INHIBITION STUDIES ON THE INTERACTION OF CONCANAVALIN A WITH POLYSACCHARIDES. Biochemistry. 1965 May;4:876–883. doi: 10.1021/bi00881a013. [DOI] [PubMed] [Google Scholar]
  5. Goldstein I. J., So L. L. Protein-carbonhydrate interaction. 3. Agar gel-diffusion studies on the interaction of Concanavalin A, a lectin isolated from jack bean, with polysaccharides. Arch Biochem Biophys. 1965 Aug;111(2):407–414. doi: 10.1016/0003-9861(65)90203-1. [DOI] [PubMed] [Google Scholar]
  6. Greer J., Kaufman H. W., Kalb A. J. An x-ray crystallographic study of concanavalin A. J Mol Biol. 1970 Mar 14;48(2):365–366. doi: 10.1016/0022-2836(70)90169-5. [DOI] [PubMed] [Google Scholar]
  7. Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inbar M., Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells. Nature. 1969 Aug 16;223(5207):710–712. doi: 10.1038/223710a0. [DOI] [PubMed] [Google Scholar]
  9. Kalb A. J., Levitzki A. Metal-binding sites of concanavalin A and their role in the binding of alpha-methyl d-glucopyranoside. Biochem J. 1968 Oct;109(4):669–672. doi: 10.1042/bj1090669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kalb A. J., Lustig A. The molecular weight of concanavalin A. Biochim Biophys Acta. 1968 Oct 21;168(2):366–367. doi: 10.1016/0005-2795(68)90161-x. [DOI] [PubMed] [Google Scholar]
  11. Nakamura S., Suzuno R. Crystallization of concanavalins A and B and canavalin from Japanese jack beans. Arch Biochem Biophys. 1965 Sep;111(3):499–505. doi: 10.1016/0003-9861(65)90228-6. [DOI] [PubMed] [Google Scholar]
  12. Shoham J., Inbar M., Sachs L. Differential toxicity on normal and transformed cells in vitro and inhibition of tumour development in vivo by concanavalin A. Nature. 1970 Sep 19;227(5264):1244–1246. doi: 10.1038/2271244a0. [DOI] [PubMed] [Google Scholar]
  13. So L. L., Goldstein I. J. Protein-carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide-concanavalin A interaction. J Biol Chem. 1967 Apr 10;242(7):1617–1622. [PubMed] [Google Scholar]
  14. So L. L., Goldstein I. J. Protein-carbohydrate interaction. IX. Application of the quantitative hapten inhibition technique to polysaccharide-concanavalin A interaction. Some comments on the forces involved n concanavalin A-polysaccharide interaction. J Immunol. 1967 Jul;99(1):158–163. [PubMed] [Google Scholar]
  15. Sumner J. B., Howell S. F. Identification of Hemagglutinin of Jack Bean with Concanavalin A. J Bacteriol. 1936 Aug;32(2):227–237. doi: 10.1128/jb.32.2.227-237.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Tsernoglou D., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 6 A resolution. J Biol Chem. 1967 Aug 25;242(16):3749–3753. [PubMed] [Google Scholar]
  17. Yariv J., Kalb A. J., Levitzki A. The interaction of concanavalin A with methyl alpha-D-glucopyranoside. Biochim Biophys Acta. 1968 Sep 3;165(2):303–305. doi: 10.1016/0304-4165(68)90063-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES