Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Sep;68(9):2165–2168. doi: 10.1073/pnas.68.9.2165

Effect of Catecholamines on the Adenosine 3′:5′-Cyclic Monophosphate Concentrations of Clonal Satellite Cells of Neurons

Alfred G Gilman 1,*, Marshall Nirenberg 1
PMCID: PMC389376  PMID: 4399927

Abstract

The effects of potential neurohormones on the intracellular concentrations of adenosine 3′:5′-cyclic monophosphate have been examined with three clonal lines of cultured glial tumors. In all cases, norepinephrine and isoproterenol produced striking elevations of the intracellular concentrations of the cyclic nucleotide. The response was mediated by a β-adrenergic receptor. This effect is hypothesized to represent a molecular mechanism for neuronal-glial communication coupled to concurrent communication between neurons.

Keywords: neuron, isoproterenol, norepinephrine, neuronal-glial communication

Full text

PDF
2165

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  2. Benda P., Someda K., Messer J., Sweet W. H. Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg. 1971 Mar;34(3):310–323. doi: 10.3171/jns.1971.34.3.0310. [DOI] [PubMed] [Google Scholar]
  3. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GALAMBOS R. A glia-neural theory of brain function. Proc Natl Acad Sci U S A. 1961 Jan 15;47:129–136. doi: 10.1073/pnas.47.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grahame-Smith D. G., Butcher R. W., Ney R. L., Sutherland E. W. Adenosine 3',5'-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J Biol Chem. 1967 Dec 10;242(23):5535–5541. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lightbody J., Pfeiffer S. E., Kornblith P. L., Herschman H. Biochemically differentiated clonal human glial cells in tissue culture. J Neurobiol. 1970;1(4):411–417. doi: 10.1002/neu.480010405. [DOI] [PubMed] [Google Scholar]
  9. Pfeiffer S. E., Herschman H. R., Lightbody J., Sato G. Synthesis by a clonal line of rat glial cells of a protein unique to the nervous system. J Cell Physiol. 1970 Jun;75(3):329–339. doi: 10.1002/jcp.1040750309. [DOI] [PubMed] [Google Scholar]
  10. Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
  11. Schmidt M. J., Palmer E. C., Dettbarn W. D., Robison G. A. Cyclic AMP and adenyl cyclase in the developing rat brain. Dev Psychobiol. 1970;3(1):53–67. doi: 10.1002/dev.420030108. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES