Abstract
The highly purified soluble ATP synthetase complex from mitochondria, containing energy-transfer Factor A (the terminal ADP phosphorylation enzyme of oxidative phosphorylation) and Factor D, catalyzes ATP-Pi and ATP-ADP exchange reactions. The ATP-Pi exchange activity is inhibited by low concentrations of the uncouplers of oxidative phosphorylation, oligomycin and p-chloromercnriphenylsulfonate. It is stimulated threefold by dithiothreitol and is Mg++ dependent. Antiserum to coupling factor 1 (F1) also inhibits the ATP-Pi exchange. The ATP-ADP exchange activity appears to be greater than the ATP-Pi exchange activity. The results suggest that the nonphosphorylated high-energy intermediate (X∼C), and possibly the phosphorylated intermediate (X∼P), are formed on the synthetase. Sites of uncoupler and oligomycin action reside in the terminal ATP synthetase.
Keywords: oligomycin, p-chloromercuriphenylsulfonate, high-energy intermediate, uncoupling
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDREOLI T. E., LAM K. W., SANADI D. R. STUDIES ON OXIDATIVE PHOSPHORYLATION. X. A COUPLING ENZYME WHICH ACTIVATES REVERSED ELECTRON TRANSFER. J Biol Chem. 1965 Jun;240:2644–2653. [PubMed] [Google Scholar]
- COOPER C., LEHNINGER A. L. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. III. The span cytochrome c to oxygen. J Biol Chem. 1956 Mar;219(1):519–529. [PubMed] [Google Scholar]
- Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross R. L., Cross B. A., Wang J. H. Detection of a phosphorylated intermediate in mitochondrial oxidative phosphorylation. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1155–1161. doi: 10.1016/0006-291x(70)90915-0. [DOI] [PubMed] [Google Scholar]
- Green D. E., Asai J., Harris R. A., Penniston J. T. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states. Arch Biochem Biophys. 1968 May;125(2):684–705. doi: 10.1016/0003-9861(68)90626-7. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Lehninger A. L., Thompson T. E. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc Natl Acad Sci U S A. 1968 Feb;59(2):484–490. doi: 10.1073/pnas.59.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lardy H. A., Ferguson S. M. Oxidative phosphorylation in mitochondria. Annu Rev Biochem. 1969;38:991–1034. doi: 10.1146/annurev.bi.38.070169.005015. [DOI] [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Mitchell R. A., Hill R. D., Boyer P. D. Mechanistic implications of Mg++, adenine nucleotide, and inhibitor effects on energy-linked reactions of submitochondrial particles. J Biol Chem. 1967 Apr 25;242(8):1793–1801. [PubMed] [Google Scholar]
- Munkres K. D., Woodward D. O. On the genetics of enzyme locational specificity. Proc Natl Acad Sci U S A. 1966 May;55(5):1217–1224. doi: 10.1073/pnas.55.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen P. L. Molecular weight, sulfhydryl conten, and phosphorylation of a homogeneous mitochondrial nucleoside diphosphokinase. J Biol Chem. 1968 Aug 25;243(16):4305–4311. [PubMed] [Google Scholar]
- SLATER E. C. Mechanism of phosphorylation in the respiratory chain. Nature. 1953 Nov 28;172(4387):975–978. doi: 10.1038/172975a0. [DOI] [PubMed] [Google Scholar]
- Sanadi D. R., Lam K. W., Kurup C. K. The role of Factor B in the energy transfer reactions of oxidative phosphorylation. Proc Natl Acad Sci U S A. 1968 Sep;61(1):277–283. doi: 10.1073/pnas.61.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sani B. P., Lam K. W., Sanadi D. R. A complex of mitochondrial factor A and a new factor involved in oxidative phosphorylation. Biochem Biophys Res Commun. 1970 May 11;39(3):444–449. doi: 10.1016/0006-291x(70)90598-x. [DOI] [PubMed] [Google Scholar]
- Skulachev V. P., Sharaf A. A., Liberman E. A. Proton conductors in the respiratory chain and artificial membranes. Nature. 1967 Nov 18;216(5116):718–719. doi: 10.1038/216718a0. [DOI] [PubMed] [Google Scholar]
- TSOU C. L. Exogenous and endogenous cytochrome c. Biochem J. 1952 Feb;50(4):493–499. doi: 10.1042/bj0500493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADKINS C. L., LEHNINGER A. L. The adenosine triphosphate-adenosine diphosphate exchange reaction of oxidative phosphorylation. J Biol Chem. 1958 Dec;233(6):1589–1597. [PubMed] [Google Scholar]
