Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Oct;68(10):2357–2360. doi: 10.1073/pnas.68.10.2357

A Model for Protein Synthesis Involving the Intermediate Formation of Peptidyl-5S RNA

Ilse Dorothea Raacke 1
PMCID: PMC389421  PMID: 5289870

Abstract

A model for protein synthesis is proposed in which the donor for the peptide elongation reaction is peptidyl-5S RNA. Space-filling models show that peptide bond formation between peptidyl-5S RNA and aminoacyl-tRNA is eminently feasible from a stereochemical point of view. The peptide is transferred to 5S RNA, while at the same time the deacylated tRNA is exchanged by a new aminoacyl-tRNA acceptor. Two peptidyl transferases are required by the model, both of which have sites for binding the termini of both aminoacyl-tRNA and peptidyl-5S RNA. The model makes detailed predictions about the properties of the transferases.

Keywords: peptidyl transferases

Full text

PDF
2357

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Wilkins M. H., Fuller W., Langridge R. Molecular and crystal structures of double-helical RNA. 3. An 11-fold molecular model and comparison of the agreement between the observed and calculated three-dimensional diffraction data for 10- and 11-fold models. J Mol Biol. 1967 Aug 14;27(3):535–548. doi: 10.1016/0022-2836(67)90057-5. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H., Nirenberg M. W. Fate of a Synthetic Polynucleotide Directing Cell-Free Protein Synthesis I. Characteristics of Degradation. Science. 1962 Nov 16;138(3542):810–813. doi: 10.1126/science.138.3542.810. [DOI] [PubMed] [Google Scholar]
  3. Bretscher M. S., Marcker K. A. Polypeptidyl-sigma-ribonucleic acid and amino-acyl-sigma-ribonucleic acid binding sites on ribosomes. Nature. 1966 Jul 23;211(5047):380–384. doi: 10.1038/211380a0. [DOI] [PubMed] [Google Scholar]
  4. Bretscher M. S. Translocation in protein synthesis: a hybrid structure model. Nature. 1968 May 18;218(5142):675–677. doi: 10.1038/218675a0. [DOI] [PubMed] [Google Scholar]
  5. CANNON M., KRUG R., GILBERT W. THE BINDING OF S-RNA BY ESCHERICHIA COLI RIBOSOMES. J Mol Biol. 1963 Oct;7:360–378. doi: 10.1016/s0022-2836(63)80030-3. [DOI] [PubMed] [Google Scholar]
  6. Chapeville F., Yot P., Paulin D. Enzymatic hydrolysis of N-acyl-aminoacyl transfer RNAs. Cold Spring Harb Symp Quant Biol. 1969;34:493–498. doi: 10.1101/sqb.1969.034.01.055. [DOI] [PubMed] [Google Scholar]
  7. Gottesman M. E. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967 Dec 10;242(23):5564–5571. [PubMed] [Google Scholar]
  8. Koltun W. L. Precision space-filling atomic models. Biopolymers. 1965 Dec;3(6):665–679. doi: 10.1002/bip.360030606. [DOI] [PubMed] [Google Scholar]
  9. Kuriki Y., Fukuma I., Kaji A. The role of the adenosine terminus of transfer ribonucleic acid in the specific binding to ribosomes and their subunits. J Biol Chem. 1969 Mar 10;244(5):1365–1372. [PubMed] [Google Scholar]
  10. Kurland C. G. The requirements for specific sRNA binding by ribosomes. J Mol Biol. 1966 Jun;18(1):90–108. doi: 10.1016/s0022-2836(66)80079-7. [DOI] [PubMed] [Google Scholar]
  11. LENGYEL P., SPEYER J. F., OCHOA S. Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1936–1942. doi: 10.1073/pnas.47.12.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LUBIN M. A priming reaction in protein synthesis. Biochim Biophys Acta. 1963 Jun 25;72:345–348. [PubMed] [Google Scholar]
  13. Lipmann F. Polypeptide chain elongation in protein biosynthesis. Science. 1969 May 30;164(3883):1024–1031. doi: 10.1126/science.164.3883.1024. [DOI] [PubMed] [Google Scholar]
  14. Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malkin L. I., Rich A. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J Mol Biol. 1967 Jun 14;26(2):329–346. doi: 10.1016/0022-2836(67)90301-4. [DOI] [PubMed] [Google Scholar]
  16. Monier R., Feunteun J., Forget B., Jordan B., Reynier M., Varricchio F. 5 S RNA and the assembly of bacterial ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:139–148. doi: 10.1101/sqb.1969.034.01.020. [DOI] [PubMed] [Google Scholar]
  17. Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  19. Raacke I. D. "Cloverleaf" conformation for 5S RNAs. Biochem Biophys Res Commun. 1968 May 23;31(4):528–533. doi: 10.1016/0006-291x(68)90509-3. [DOI] [PubMed] [Google Scholar]
  20. Raacke I. D. Stereochemistry of the puromycin reaction. Biochem Biophys Res Commun. 1971 Apr 2;43(1):168–173. doi: 10.1016/s0006-291x(71)80102-x. [DOI] [PubMed] [Google Scholar]
  21. Rychlík I. Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes. Biochim Biophys Acta. 1966 Feb 21;114(2):425–427. doi: 10.1016/0005-2787(66)90327-3. [DOI] [PubMed] [Google Scholar]
  22. Staehelin T., Maglott D. M., Monro R. E. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:39–48. doi: 10.1101/sqb.1969.034.01.008. [DOI] [PubMed] [Google Scholar]
  23. WATSON J. D. THE SYNTHESIS OF PROTEINS UPON RIBOSOMES. Bull Soc Chim Biol (Paris) 1964;46:1399–1425. [PubMed] [Google Scholar]
  24. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES