Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Oct;68(10):2536–2539. doi: 10.1073/pnas.68.10.2536

Chloroplast RNA Populations in Dark-Grown, Light-Grown, and Greening Euglena gracilis

Ronald D Brown 1,2, Robert Haselkorn 1,2
PMCID: PMC389463  PMID: 5002821

Abstract

RNA preparations from dark-grown, light-grown, and greening Euglena gracilis have been compared by polyacrylamide gel electrophoresis and by hybridization to Euglena chloroplast DNA. Chloroplast ribosomal RNA is not detected in dark-grown cells; its abundance increases in greening cells over a 72 hr period until the concentration characteristic of light-grown cells is reached. Other RNA species complementary to chloroplast DNA are present in comparable abundance in light-grown, dark-grown, and greening cells.

Keywords: polyacrylamide gel electrophoresis, DNA-RNA hybridization-competition

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendich A. J., McCarthy B. J. Ribosomal RNA homologies among distantly related organisms. Proc Natl Acad Sci U S A. 1970 Feb;65(2):349–356. doi: 10.1073/pnas.65.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J Mol Biol. 1968 Feb 14;31(3):325–348. doi: 10.1016/0022-2836(68)90413-0. [DOI] [PubMed] [Google Scholar]
  3. Brown R. D., Haselkorn R. Synthesis and maturation of cytoplasmic ribosomal RNA in Euglena gracilis. J Mol Biol. 1971 Aug 14;59(3):491–503. doi: 10.1016/0022-2836(71)90312-3. [DOI] [PubMed] [Google Scholar]
  4. Heizmann P. Propriétés des ribosomes et des RNA ribosomiques d'Euglena gracilis. Biochim Biophys Acta. 1970 Nov 12;224(1):144–154. [PubMed] [Google Scholar]
  5. Pickard B. G., Thimann K. V. Transport and Distribution of Auxin during Tropistic Response. II. The Lateral Migration of Auxin in Phototropism of Coleoptiles. Plant Physiol. 1964 May;39(3):341–350. doi: 10.1104/pp.39.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Portier C., Nigon V. Propriétés des RNA ribosomiques obtenus à partir d'une forme balnche d'Euglena gracilis. Biochim Biophys Acta. 1968 Dec 17;169(2):540–542. [PubMed] [Google Scholar]
  7. Schiff J. A., Zeldin M. H., Rubman J. Chlorophyll Formation and Photosynthetic Competence in Euglena During Light-Induced Chloroplast Development in the Presence of 3, (3,4-dichlorophenyl) 1,1-Dimethyl Urea (DCMU). Plant Physiol. 1967 Dec;42(12):1716–1725. doi: 10.1104/pp.42.12.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Stutz E., Rawson J. R. Separation and characterization of Euglena gracilis chloroplast single-strand DNA. Biochim Biophys Acta. 1970 May 21;209(1):16–23. doi: 10.1016/0005-2787(70)90656-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES