Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Nov;68(11):2656–2659. doi: 10.1073/pnas.68.11.2656

Uptake of Tricarboxylic Acid Cycle Intermediates by Preimplantation Mouse Embryos In Vitro

Martin A Kramen 1, John D Biggers 1
PMCID: PMC389494  PMID: 5288241

Abstract

Preimplantation mouse embryos were incubated for various periods in the 14C-labeled intermediates of the tricarboxylic acid cycle, malate, citrate, or 2-oxoglutarate. A marked increase in uptake of these substrates first occurred at the 4-cell stage, the uptake increasing with the length of incubation and the developmental stage of the embryo. In the light of recent observations on ultrastructural changes in mouse embryos with development, studies of mitochondrial transport systems, and the growth of metabolic activities in developing mouse embryos, the increase in accumulation of the tricarboxylic acid cycle intermediates with development may indicate fundamental changes in mitochondrial function that is necessary for further development.

Keywords: mitochondria, cleavage stages

Full text

PDF
2656

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E., Condon W., Sharp D. A study of oogenesis and early embryogenesis in the rabbit, Oryctolagus cuniculus, with special reference to the structural changes of mitochondria. J Morphol. 1970 Jan;130(1):67–91. doi: 10.1002/jmor.1051300108. [DOI] [PubMed] [Google Scholar]
  2. BRINSTER R. L. STUDIES ON THE DEVELOPMENT OF MOUSE EMBRYOS IN VITRO. II. THE EFFECT OF ENERGY SOURCE. J Exp Zool. 1965 Feb;158:59–68. doi: 10.1002/jez.1401580106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biggers J. D., Whittingham D. G., Donahue R. P. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci U S A. 1967 Aug;58(2):560–567. doi: 10.1073/pnas.58.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinster R. L. Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim Biophys Acta. 1965 Nov 22;110(2):439–441. doi: 10.1016/s0926-6593(65)80056-x. [DOI] [PubMed] [Google Scholar]
  5. Brinster R. L. Malic dehydrogenase activity in the preimplantation mouse embryo. Exp Cell Res. 1966 Aug;43(1):131–135. doi: 10.1016/0014-4827(66)90386-7. [DOI] [PubMed] [Google Scholar]
  6. Brinster R. L., Thomson J. L. Development of eight-cell mouse embryos in vitro. Exp Cell Res. 1966 May;42(2):308–315. doi: 10.1016/0014-4827(66)90295-3. [DOI] [PubMed] [Google Scholar]
  7. Calarco P. G., Brown E. H. An ultrastructural and cytological study of preimplantation development of the mouse. J Exp Zool. 1969 Jul;171(3):253–283. doi: 10.1002/jez.1401710303. [DOI] [PubMed] [Google Scholar]
  8. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  9. FRIDHANDLER L., HAFEZ E. S., PINCUS G. Respiratory metabolism of mammalian eggs. Proc Soc Exp Biol Med. 1956 May;92(1):127–129. doi: 10.3181/00379727-92-22407. [DOI] [PubMed] [Google Scholar]
  10. Hillman N., Tasca R. J. Ultrastructural and autoradiographic studies of mouse cleavage stages. Am J Anat. 1969 Oct;126(2):151–173. doi: 10.1002/aja.1001260203. [DOI] [PubMed] [Google Scholar]
  11. LOVTRUP S., WERDINIUS B. Metabolic phases during amphibian embryogenesis. J Exp Zool. 1957 Jul;135(2):203–221. doi: 10.1002/jez.1401350202. [DOI] [PubMed] [Google Scholar]
  12. MAHLER H. R., WITTENBERGER M. H., BRAND L. Biochemical studies of the developing avian embryo. II. Enzymes of the citric acid cycle. J Biol Chem. 1958 Oct;233(4):770–782. [PubMed] [Google Scholar]
  13. MATHAI A. M. AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT. Biometrics. 1965 Jun;21:376–385. [PubMed] [Google Scholar]
  14. Ozaki H., Whiteley A. H. L-malate dehydrogenase in the development of the sea urchin Strongylocentrotus purpuratus. Dev Biol. 1970 Feb;21(1):196–215. doi: 10.1016/0012-1606(70)90068-0. [DOI] [PubMed] [Google Scholar]
  15. Stern S., Biggers J. D., Anderson E. Mitochondria and early development of the mouse. J Exp Zool. 1971 Feb;176(2):179–191. doi: 10.1002/jez.1401760206. [DOI] [PubMed] [Google Scholar]
  16. VISHWAKARMA P., MILLER T. RENAL TUBULAR TRANSPORT OF CITRATE: RELATIONS WITH CALCIUM. Am J Physiol. 1963 Aug;205:281–285. doi: 10.1152/ajplegacy.1963.205.2.281. [DOI] [PubMed] [Google Scholar]
  17. WALLACE R. A. Enzymatic patterns in the developing frog embryo. Dev Biol. 1961 Aug;3:486–515. doi: 10.1016/0012-1606(61)90029-x. [DOI] [PubMed] [Google Scholar]
  18. Wales R. G., Biggers J. D. The permeability of two- and eight-cell mouse embryos to L-malic acid. J Reprod Fertil. 1968 Feb;15(1):103–111. doi: 10.1530/jrf.0.0150103. [DOI] [PubMed] [Google Scholar]
  19. van den BERGH S., SLATER E. C. The respiratory activity and permeability of housefly sarcosomes. Biochem J. 1962 Feb;82:362–371. doi: 10.1042/bj0820362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van den Bergh S. G. Pyruvate oxidation and the permeability of housefly sarcosomes. Biochem J. 1964 Oct;93(1):128–136. doi: 10.1042/bj0930128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES