Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826

A Possible Role for RNA Polymerase in the Initiation of M13 DNA Synthesis

Douglas Brutlag 1, Randy Schekman 1, Arthur Kornberg 1
PMCID: PMC389535  PMID: 4941987

Abstract

The conversion of single-stranded DNA of bacteriophage M13 to the double-stranded replicative form in Escherichia coli is blocked by rifampicin, an antibiotic that specifically inhibits the host-cell RNA polymerase. Chloramphenicol, an inhibitor of protein synthesis, does not block this conversion. The next stage in phage DNA replication, multiplication of the doublestranded forms, is also inhibited by rifampicin; chloramphenicol, although inhibitory, has a much smaller effect. An E. coli mutant whose RNA polymerase is resistant to rifampicin action does not show inhibition of M13 DNA replication by rifampicin. These findings indicate that a specific rifampicin-RNA polymerase interaction is responsible for blocking new DNA synthesis. It now seems plausible that RNA polymerase has some direct role in the initiation of DNA replication, perhaps by forming a primer RNA that serves for covalent attachment of the deoxyribonucleotide that starts the new DNA chain.

Keywords: DNA replication, chloramphenicol, replicative form, rifampicin, single-stranded DNA

Full text

PDF
2826

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coulian M. Initiation of the replication of single-stranded DNA by Escherichia coli DNA polymerase. Cold Spring Harb Symp Quant Biol. 1968;33:11–20. doi: 10.1101/sqb.1968.033.01.006. [DOI] [PubMed] [Google Scholar]
  2. Forsheit A. B., Ray D. S. Conformations of the single-stranded DNA of bacteriophage M13. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1534–1541. doi: 10.1073/pnas.67.3.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goulian M., Kornberg A. Enzymatic synthesis of DNA. 23. Synthesis of circular replicative form of phage phi-X174 DNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1723–1730. doi: 10.1073/pnas.58.4.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goulian M., Lucas Z. J., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J Biol Chem. 1968 Feb 10;243(3):627–638. [PubMed] [Google Scholar]
  5. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  6. Hohn B., Lechner H., Marvin D. A. Filamentous bacterial viruses. I. DNA synthesis during the early stages of infection with fd. J Mol Biol. 1971 Feb 28;56(1):143–154. doi: 10.1016/0022-2836(71)90090-8. [DOI] [PubMed] [Google Scholar]
  7. Pratt D., Erdahl W. S. Genetic control of bacteriophage M13 DNA synthesis. J Mol Biol. 1968 Oct 14;37(1):181–200. doi: 10.1016/0022-2836(68)90082-x. [DOI] [PubMed] [Google Scholar]
  8. Ray D. S., Schekman R. W. Replication of bacteriophage M13. I. Sedimentation analysis of crude lysates of M13-infected bacteria. Biochim Biophys Acta. 1969 Apr 22;179(2):398–407. [PubMed] [Google Scholar]
  9. Reid P., Speyer J. Rifampicin inhibition of ribonucleic acid and protein synthesis in normal and ethylenediaminetetraacetic acid-treated Escherichia coli. J Bacteriol. 1970 Oct;104(1):376–389. doi: 10.1128/jb.104.1.376-389.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schaller H., Voss H., Gucker S. Structure of the DNA of bacteriophage fd. II. Isolation and characterization of a DNA fraction with double strand-like properties. J Mol Biol. 1969 Sep 28;44(3):445–458. doi: 10.1016/0022-2836(69)90372-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES